Vis-NIR Spectroscopy and PLS-Da Model for Classification of Arabica and Robusta Roasted Coffee Bean

Article Preview

Abstract:

Visible-Near Infrared (Vis-NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to classify Arabica and Robusta roasted coffee beans. The number of coffee beans analyzed was 200 samples consisting of 5 origins (Flores, Temanggung, Aceh Gayo, Jawa, and Toraja). Reflectance spectra with a wavelength of 450-950 nm were used to build two types of models, namely single-origin and general models. Single-origin Flores, Temanggung, Aceh Gayo, and Toraja models performed very well to classify coffee beans samples from the same origin with Sen, Spe, Acc, and Rel of 1, as well as TFN and TFP of 0. General PLS-DA model with baseline correction pretreatment yields Sen, Spe, Acc, and Rel of 0.97, as well as TFN and TFP of 0.04. Based on this paper, it was concluded that Vis-NIR combined with PLS-DA perform well in classifying roasted coffee beans based on the variety.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-52

Citation:

Online since:

August 2022

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] International Coffee Association. Coffee Development Report 2019. Growing for prosperity. Economic viability as the catalyst for a sustainable coffee sector. (United Nations, New York and Geneva) (2019).

Google Scholar

[2] P. Viola, Coffee and health, J. Appl. Cosmetol. 23 (2005) 129–137.

Google Scholar

[3] M.A. Ameyu, Physical quality analysis of roasted arabica coffee beans subjected to different harvesting and postharvest processing methods in Eastern Ethiopia, Food Sci. Qual. Manag. 57 (2016) 2224–6088.

Google Scholar

[4] P. Ghosh, N. Venkatachalapathy, Processing and drying of coffee - A review, Int. J. Eng. Res. Technol. 3 (2014) 784–794.

Google Scholar

[5] M. Münchow, J. Alstrup, I. Steen, D. Giacalone, Roasting conditions and coffee flavor: A multi-study empirical investigation, Beverages. 6 (2020) 1–14.

DOI: 10.3390/beverages6020029

Google Scholar

[6] R.C.E. Dias, M.D.T. Benassi, Discrimination between arabica and robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree?, Beverages. 1 (2015) 127–139.

DOI: 10.3390/beverages1030127

Google Scholar

[7] G. Marek, B. Dobrzański, T. Oniszczuk, M. Combrzyński, D. Ćwikła, R. Rusinek, Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS Sensors, Sensors. 20 (2020) 2124.

DOI: 10.3390/s20072124

Google Scholar

[8] J. Kath, V.M. Byrareddy, A. Craparo, T. Nguyen-Huy, S. Mushtaq, L. Cao, L. Bossolasco, Not so robust: Robusta coffee production is highly sensitive to temperature, Glob. Chang. Biol. 26 (2020) 3677–3688.

DOI: 10.1111/gcb.15097

Google Scholar

[9] H. Plecher, Average prices for Arabica and robusta coffee worldwide from 2014 to 2025, Statista. (2021).

Google Scholar

[10] T.K. Lim, Coffea arabica edible medicinal and non-medicinal plants, Fruits. 5 (2013) p.614–79.

DOI: 10.1007/978-94-007-5653-3_32

Google Scholar

[11] K.M. Santos, M.F.V. Moura, F.G. Azevedo, K.M.G. Lima, I.M. Raimundo, C. Pasquini, Classification of Brazilian coffee using near-infrared spectroscopy and multivariate calibration, Anal. Lett. 45 (2012) 774–781.

DOI: 10.1080/00032719.2011.653905

Google Scholar

[12] A.P. Craig, B.G. Botelho, L.S. Oliveira, A.S. Franca, Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality, Food Chem. 245 (2018) 1052–1061.

DOI: 10.1016/j.foodchem.2017.11.066

Google Scholar

[13] E. Bertone, A. Venturello, A. Giraudo, G. Pellegrino, F. Geobaldo, Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee, Food Control. 59 (2016) 683–689.

DOI: 10.1016/j.foodcont.2015.06.055

Google Scholar

[14] M.F.R. Pahlawan, R.K. Wati, R.E. Masithoh, Development of a low-cost modular VIS/NIR spectroscopy for predicting soluble solid content of banana, IOP Conf. Ser.: Earth Environ. Sci. 644 (2021) 012047.

DOI: 10.1088/1755-1315/644/1/012047

Google Scholar

[15] Y. Li, H. Yang, Honey discrimination using visible and near-infrared spectroscopy, ISRN Spectrosc. (2012) 1–4.

DOI: 10.5402/2012/487040

Google Scholar

[16] H. Zhang, Z. Duan, Y. Li, G. Zhao, S. Zhu, W. Fu, T. Peng, Q. Zhao, S. Svanberg, J. Hu, Vis/NIR reflectance spectroscopy for hybrid rice variety identification and chlorophyll content evaluation for different nitrogen fertilizer levels, R. Soc. Open Sci. 6 (2019).

DOI: 10.1098/rsos.191132

Google Scholar

[17] Z. Guo, W. Huang, Y. Peng, Q. Chen, Q. Ouyang, J. Zhao, Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of Fuji, apple, Postharvest Biol. Technol. 115 (2016) 81–90.

DOI: 10.1016/j.postharvbio.2015.12.027

Google Scholar

[18] R.E. Masithoh, H.Z. Amanah, B.K. Cho, Application of fourier transform near-infrared (FT-NIR) and fourier transform infrared (FT-IR) spectroscopy coupled with wavelength selection for fast discrimination of similar color of tuber flours, Indones. J. Chem. 20 (2020) 680–687.

DOI: 10.22146/ijc.48092

Google Scholar

[19] A. Yashin, Y. Yashin, J.Y. Wang, B. Nemzer, Antioxidant and antiradical activity of coffee, Antioxidants. 2 (2013) 230–245.

DOI: 10.3390/antiox2040230

Google Scholar

[20] J.A. Vignoli, M.C. Viegas, D.G. Bassoli, M.T. Benassi, Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees, Food Res. Int. 61 (2014) 279–285.

DOI: 10.1016/j.foodres.2013.06.006

Google Scholar

[21] M.F. Kurniawan, N. Andarwulan, N. Wulandari, M. Rafi, Metabolomic approach for understanding phenolic compounds and melanoidin roles on antioxidant activity of Indonesia robusta and arabica coffee extracts, Food Sci. Biotechnol. 26 (2017) 1475–1480.

DOI: 10.1007/s10068-017-0228-6

Google Scholar

[22] R.E. Masithoh, M.F.R. Pahlawan, R.K. Wati, Non-destructive determination of SSC and pH of banana using a modular Vis/NIR spectroscopy: comparison of Partial Least Square (PLS) and Principle Component Regression (PCR), IOP Conf. Ser.: Earth Environ. Sci. 752 (2021) 012047.

DOI: 10.1088/1755-1315/752/1/012047

Google Scholar

[23] L.S. Vieira, C. Assis, M.E.L.R. de Queiroz, A.A. Neves, A.F. de Oliveira, Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection, Food Chem. 345 (2021) 128866.

DOI: 10.1016/j.foodchem.2020.128866

Google Scholar

[24] F. Gordillo-Delgado, A. Bedoya, E. Marin, Study of the pigments in Colombian powdered coffee using photoacoustic spectroscopy, Int. J. Themophys. 38 (2017).

DOI: 10.1007/s10765-016-2144-z

Google Scholar

[25] R.K. Wati, M.F.R. Pahlawan, R.E. Masithoh, Development of calibration model for pH content of intact tomatoes using a low-cost Vis/NIR spectroscopy, IOP Conf. Ser.: Earth Environ. Sci. 686 (2021).

DOI: 10.1088/1755-1315/686/1/012049

Google Scholar

[26] M.N. Merzlyak, A.E. Solovchenko, A.A. Gitelson, Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit, Postharvest Biol. Technol. 27 (2003) 197–211.

DOI: 10.1016/s0925-5214(02)00066-2

Google Scholar

[27] F.D. Sánchez, E.M.S. López, S.F. Kerstupp, R.V. Ibarra, L. Scheinvar, Colorant extraction from red prickly pear (Opuntia lasiacantha) for food application, Electron. J. Environ. Agric. Food Chem. 5 (2006) 1330–1337.

Google Scholar

[28] K.S. Chia, H.A. Rahim, R.A. Rahim, Evaluation of common pre-processing approaches for visible (VIS) and shortwave near infrared (SWNIR) spectroscopy in soluble solids content (SSC) assessment, Biosyst. Eng. 115 (2013) 82–88.

DOI: 10.1016/j.biosystemseng.2013.02.008

Google Scholar

[29] A. Ray, A. Bandyopadhyay, S. De, B. Ray, P.N. Ghosh, A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm, Opt. Laser Technol. 39 (2007) 359–367.

DOI: 10.1016/j.optlastec.2005.07.002

Google Scholar

[30] J. Fernández-Novales, T. Garde-Cerdán, J. Tardáguila, G. Gutiérrez-Gamboa, E.P. Pérez-Álvarez, M.P. Diago, Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening, Talanta. 199 (2019) 244–253.

DOI: 10.1016/j.talanta.2019.02.037

Google Scholar

[31] M. Golic, K. Walsh, P. Lawson, Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature, Appl. Spectrosc. 57 (2003) 139–45.

DOI: 10.1366/000370203321535033

Google Scholar

[32] I.M.A. Rahim, H.A. Rahim, R. Ghazali, R. Ismail, J. Omar, Glucose detection in blood using near-infrared spectroscopy: Significant wavelength for glucose detection, J. Teknol. 78 (2016) 85–91.

DOI: 10.11113/jt.v78.9424

Google Scholar