[1]
International Coffee Association. Coffee Development Report 2019. Growing for prosperity. Economic viability as the catalyst for a sustainable coffee sector. (United Nations, New York and Geneva) (2019).
Google Scholar
[2]
P. Viola, Coffee and health, J. Appl. Cosmetol. 23 (2005) 129–137.
Google Scholar
[3]
M.A. Ameyu, Physical quality analysis of roasted arabica coffee beans subjected to different harvesting and postharvest processing methods in Eastern Ethiopia, Food Sci. Qual. Manag. 57 (2016) 2224–6088.
Google Scholar
[4]
P. Ghosh, N. Venkatachalapathy, Processing and drying of coffee - A review, Int. J. Eng. Res. Technol. 3 (2014) 784–794.
Google Scholar
[5]
M. Münchow, J. Alstrup, I. Steen, D. Giacalone, Roasting conditions and coffee flavor: A multi-study empirical investigation, Beverages. 6 (2020) 1–14.
DOI: 10.3390/beverages6020029
Google Scholar
[6]
R.C.E. Dias, M.D.T. Benassi, Discrimination between arabica and robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree?, Beverages. 1 (2015) 127–139.
DOI: 10.3390/beverages1030127
Google Scholar
[7]
G. Marek, B. Dobrzański, T. Oniszczuk, M. Combrzyński, D. Ćwikła, R. Rusinek, Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS Sensors, Sensors. 20 (2020) 2124.
DOI: 10.3390/s20072124
Google Scholar
[8]
J. Kath, V.M. Byrareddy, A. Craparo, T. Nguyen-Huy, S. Mushtaq, L. Cao, L. Bossolasco, Not so robust: Robusta coffee production is highly sensitive to temperature, Glob. Chang. Biol. 26 (2020) 3677–3688.
DOI: 10.1111/gcb.15097
Google Scholar
[9]
H. Plecher, Average prices for Arabica and robusta coffee worldwide from 2014 to 2025, Statista. (2021).
Google Scholar
[10]
T.K. Lim, Coffea arabica edible medicinal and non-medicinal plants, Fruits. 5 (2013) p.614–79.
DOI: 10.1007/978-94-007-5653-3_32
Google Scholar
[11]
K.M. Santos, M.F.V. Moura, F.G. Azevedo, K.M.G. Lima, I.M. Raimundo, C. Pasquini, Classification of Brazilian coffee using near-infrared spectroscopy and multivariate calibration, Anal. Lett. 45 (2012) 774–781.
DOI: 10.1080/00032719.2011.653905
Google Scholar
[12]
A.P. Craig, B.G. Botelho, L.S. Oliveira, A.S. Franca, Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality, Food Chem. 245 (2018) 1052–1061.
DOI: 10.1016/j.foodchem.2017.11.066
Google Scholar
[13]
E. Bertone, A. Venturello, A. Giraudo, G. Pellegrino, F. Geobaldo, Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee, Food Control. 59 (2016) 683–689.
DOI: 10.1016/j.foodcont.2015.06.055
Google Scholar
[14]
M.F.R. Pahlawan, R.K. Wati, R.E. Masithoh, Development of a low-cost modular VIS/NIR spectroscopy for predicting soluble solid content of banana, IOP Conf. Ser.: Earth Environ. Sci. 644 (2021) 012047.
DOI: 10.1088/1755-1315/644/1/012047
Google Scholar
[15]
Y. Li, H. Yang, Honey discrimination using visible and near-infrared spectroscopy, ISRN Spectrosc. (2012) 1–4.
DOI: 10.5402/2012/487040
Google Scholar
[16]
H. Zhang, Z. Duan, Y. Li, G. Zhao, S. Zhu, W. Fu, T. Peng, Q. Zhao, S. Svanberg, J. Hu, Vis/NIR reflectance spectroscopy for hybrid rice variety identification and chlorophyll content evaluation for different nitrogen fertilizer levels, R. Soc. Open Sci. 6 (2019).
DOI: 10.1098/rsos.191132
Google Scholar
[17]
Z. Guo, W. Huang, Y. Peng, Q. Chen, Q. Ouyang, J. Zhao, Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of Fuji, apple, Postharvest Biol. Technol. 115 (2016) 81–90.
DOI: 10.1016/j.postharvbio.2015.12.027
Google Scholar
[18]
R.E. Masithoh, H.Z. Amanah, B.K. Cho, Application of fourier transform near-infrared (FT-NIR) and fourier transform infrared (FT-IR) spectroscopy coupled with wavelength selection for fast discrimination of similar color of tuber flours, Indones. J. Chem. 20 (2020) 680–687.
DOI: 10.22146/ijc.48092
Google Scholar
[19]
A. Yashin, Y. Yashin, J.Y. Wang, B. Nemzer, Antioxidant and antiradical activity of coffee, Antioxidants. 2 (2013) 230–245.
DOI: 10.3390/antiox2040230
Google Scholar
[20]
J.A. Vignoli, M.C. Viegas, D.G. Bassoli, M.T. Benassi, Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees, Food Res. Int. 61 (2014) 279–285.
DOI: 10.1016/j.foodres.2013.06.006
Google Scholar
[21]
M.F. Kurniawan, N. Andarwulan, N. Wulandari, M. Rafi, Metabolomic approach for understanding phenolic compounds and melanoidin roles on antioxidant activity of Indonesia robusta and arabica coffee extracts, Food Sci. Biotechnol. 26 (2017) 1475–1480.
DOI: 10.1007/s10068-017-0228-6
Google Scholar
[22]
R.E. Masithoh, M.F.R. Pahlawan, R.K. Wati, Non-destructive determination of SSC and pH of banana using a modular Vis/NIR spectroscopy: comparison of Partial Least Square (PLS) and Principle Component Regression (PCR), IOP Conf. Ser.: Earth Environ. Sci. 752 (2021) 012047.
DOI: 10.1088/1755-1315/752/1/012047
Google Scholar
[23]
L.S. Vieira, C. Assis, M.E.L.R. de Queiroz, A.A. Neves, A.F. de Oliveira, Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection, Food Chem. 345 (2021) 128866.
DOI: 10.1016/j.foodchem.2020.128866
Google Scholar
[24]
F. Gordillo-Delgado, A. Bedoya, E. Marin, Study of the pigments in Colombian powdered coffee using photoacoustic spectroscopy, Int. J. Themophys. 38 (2017).
DOI: 10.1007/s10765-016-2144-z
Google Scholar
[25]
R.K. Wati, M.F.R. Pahlawan, R.E. Masithoh, Development of calibration model for pH content of intact tomatoes using a low-cost Vis/NIR spectroscopy, IOP Conf. Ser.: Earth Environ. Sci. 686 (2021).
DOI: 10.1088/1755-1315/686/1/012049
Google Scholar
[26]
M.N. Merzlyak, A.E. Solovchenko, A.A. Gitelson, Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit, Postharvest Biol. Technol. 27 (2003) 197–211.
DOI: 10.1016/s0925-5214(02)00066-2
Google Scholar
[27]
F.D. Sánchez, E.M.S. López, S.F. Kerstupp, R.V. Ibarra, L. Scheinvar, Colorant extraction from red prickly pear (Opuntia lasiacantha) for food application, Electron. J. Environ. Agric. Food Chem. 5 (2006) 1330–1337.
Google Scholar
[28]
K.S. Chia, H.A. Rahim, R.A. Rahim, Evaluation of common pre-processing approaches for visible (VIS) and shortwave near infrared (SWNIR) spectroscopy in soluble solids content (SSC) assessment, Biosyst. Eng. 115 (2013) 82–88.
DOI: 10.1016/j.biosystemseng.2013.02.008
Google Scholar
[29]
A. Ray, A. Bandyopadhyay, S. De, B. Ray, P.N. Ghosh, A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm, Opt. Laser Technol. 39 (2007) 359–367.
DOI: 10.1016/j.optlastec.2005.07.002
Google Scholar
[30]
J. Fernández-Novales, T. Garde-Cerdán, J. Tardáguila, G. Gutiérrez-Gamboa, E.P. Pérez-Álvarez, M.P. Diago, Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening, Talanta. 199 (2019) 244–253.
DOI: 10.1016/j.talanta.2019.02.037
Google Scholar
[31]
M. Golic, K. Walsh, P. Lawson, Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature, Appl. Spectrosc. 57 (2003) 139–45.
DOI: 10.1366/000370203321535033
Google Scholar
[32]
I.M.A. Rahim, H.A. Rahim, R. Ghazali, R. Ismail, J. Omar, Glucose detection in blood using near-infrared spectroscopy: Significant wavelength for glucose detection, J. Teknol. 78 (2016) 85–91.
DOI: 10.11113/jt.v78.9424
Google Scholar