Detection of Cancer Cells Using G-Rich DNA Based Target Binding-Switching Calorimetric Biosensor

Article Preview

Abstract:

This paper reports the G-rich ssDNA for the colorimetric detection of cancer cells. The ssDNA-1 sequence has explored for the potential application of “Turn-On” colorimetric sensor for selective and sensitive detection of cancer cells. While complementary G-rich DNA strand form G-quadruplex with hemin molecule, which is more effective to catalyze the peroxidase mimicking activity towards TMB chromogenic substrate. The ssDNA-1 exhibits good selectivity for cancer cells. The colorimetric intensity of TMB was enhanced upon interaction of leukemic lymphoblasts cancer cells. The effect of pH has turned the selective sensing performances of the biosensor for detecting cancer cells with a lower detection limit of 0.54 nM, 0.18 nM, and 0.2 nM respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Achilefu, Lighting up tumors with receptor-specific optical molecular probes, Technol. Cancer Res. T., 3 (2004) 393–409.

DOI: 10.1177/153303460400300410

Google Scholar

[2] D.R. Elias, D. Thorek, A. K. Chen, J. Czupryna and A. Tsourkas, In vivo imaging of cancer biomarkers using activatable molecular probes, Cancer Biomark., 4 (2008) 287–305.

DOI: 10.3233/cbm-2008-4602

Google Scholar

[3] K.C. Liu, B. S. Lin and X. P. Lan, J. Cell. Biochem., 114 (2013) 250– 255.

Google Scholar

[4] W.H. Tan, M. J. Donovan, and J. H. Jiang, Aptamers from cell-based selection for bioanalytical applications, Chem. Rev., 113 (2013) 2842 −2862.

DOI: 10.1021/cr300468w

Google Scholar

[5] Z. W. Tang, D. Shangguan, K. M. Wang, H. Shi, K. Sefah, P. Mallikratchy, H. W. Chen, Y. Li and W. H. Tan, Selection of aptamers for molecular recognition and characterization of cancer cells, Anal. Chem., 79 (2007) 4900–4907.

DOI: 10.1021/ac070189y

Google Scholar

[6] P. Wu, Y. Gao, Y. Lu, H. Zhang and C. X. Cai, Analyst, 138 (2013) 6501–6510.

Google Scholar

[7] K. Sefah, Z. W. Tang, D. H. Shangguan, H. Chen, D. Lopez-Colon, Y. Li, P. Parekh, J. Martin, L. Meng, J. A. Phillips, Y. M. Kim and W. H. Tan, Molecular recognition of acute myeloid leukemia using aptamers, Leukemia, 23 (2009) 235–244.

DOI: 10.1038/leu.2008.335

Google Scholar

[8] Z. H. Sheng, D. H. Hu, P. F. Zhang, P. Gong, D. Y. Gao, S. H. Liu and L. T. Cai, Chem. Commun., Cation exchange in aptamer-conjugated CdSe nanoclusters: a novel fluorescence signal amplification for cancer cell detection, 48 (2012) 4202–4204.

DOI: 10.1039/c2cc00033d

Google Scholar

[9] H. Y. Liu, S. M. Xu, Z. M. He, A. P. Deng and J. J. Zhu, Supersandwich Cytosensor for Selective and Ultrasensitive Detection of Cancer Cells Using Aptamer-DNA Concatamer-Quantum Dots Probes, Anal. Chem., 85 (2013) 3385–3392.

DOI: 10.1021/ac303789x

Google Scholar

[10] X. L. Zhu, Y. Cao, Z. Q. Liang and G. X. Li, Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells, Protein Cell, 1 (2010) 842– 846.

DOI: 10.1007/s13238-010-0110-2

Google Scholar

[11] G. D. Liu, X. Mao, J. A. Phillips, H. Xu, W. H. Tan and L. W. Zeng, Aptamer−Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells, Anal. Chem., 81 (2009) 10013–10018.

DOI: 10.1021/ac901889s

Google Scholar

[12] S. Bamrungsap, T. Chen, M. I. Shukoor, Z. Chen, K. Sefah, Y. Chen and W. H. Tan, Pattern Recognition of Cancer Cells Using Aptamer-Conjugated Magnetic Nanoparticles, ACS Nano, 6 (2012) 3974–3981.

DOI: 10.1021/nn3002328

Google Scholar

[13] Y. Zhu, P. Chandra and Y. B. Shim, Ultrasensitive and Selective Electrochemical Diagnosis of Breast Cancer Based on a Hydrazine–Au Nanoparticle–Aptamer Bioconjugate, Anal. Chem., 85 (2013) 1058–1064.

DOI: 10.1021/ac302923k

Google Scholar

[14] Z. Yi, X.-Y. Li, Q. Gao, L.-J. Tang and X. Chu, Analyst, 138 (2013) 2032–(2037).

Google Scholar

[15] Y. J. Song, W. L. Wei and X. G. Qu, Colorimetric biosensing using smart materials, Adv. Mater., 23 (2011) 4215–4236.

DOI: 10.1002/adma.201101853

Google Scholar

[16] T. Li, B. L. Li, E. K. Wang and S. J. Dong, G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye, Chem. Commun., (2009) 3551–3553.

DOI: 10.1039/b903993g

Google Scholar

[17] C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap and W. H. Tan, Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells, Anal. Chem., 80 (2008) 1067–1072.

DOI: 10.1021/ac702037y

Google Scholar

[18] W. T. Lu, S. R. Arumugam, D. Senapati, A. K. Singh, T. Arbneshi, S. A. Khan, H. T. Yu and P. C. Ray, Multifunctional Oval-Shaped Gold-Nanoparticle-Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay, ACS Nano, 4 (2010) 1739–1749.

DOI: 10.1021/nn901742q

Google Scholar

[19] H. Q. Wang, W. Y. Liu, Z. Wu, L. J. Tang, X. M. Xu, R. Q. Yu and J. H. Jiang, Anal. Chem., 83 (2011) 1883–1889.

Google Scholar