Structural, Microstructural and Dielectric Properties of BaTi0.905Sn0.095O3 Ceramic

Article Preview

Abstract:

The BaTi0.905Sn0.095O3 ceramic has been synthesized by using a solid-state method and sintered at 1450 °C in air for 3 hours. The doping effect of 9.5 mol% Sn into BaTiO3 ceramic towards its crystal structure, dielectric properties and microstructure were investigated. The X-ray diffraction (XRD) analysis shows that the sample exhibited tetragonal structure with space group p4mm. The dielectric constant, εr measurement revealed that the sample reached the maximum εr value about 4393 when measured at Tc around 45 °C with frequency 1 kHz. The dielectric loss value was considerably low about below than 0.3 for the temperature range from 30 °C to 150 °C measured at 1 kHz. The capacitance value range lies between 10-9 and 10-10 indicates the bulk effect has dominated the electrical properties of the sample. It shows a good correlation with the microstructure results where the grains were well developed and homogenously distributed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-46

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu, W., Wang, J., Ke, X., & Li, S. (2017). Large piezoelectric performance of Sn doped BaTiO3 ceramics deviating from quadruple point. Journal of Alloys and Compounds, 712, 1-6.

DOI: 10.1016/j.jallcom.2017.04.013

Google Scholar

[2] Shi, T., Xie, L., Gu, L., & Zhu, J. (2015). Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3. Scientific reports, 5(1), 1-4.

DOI: 10.1038/srep08606

Google Scholar

[3] Veselinović, L., Mitrić, M., Avdeev, M., Marković, S., & Uskoković, D. (2016). New insights into BaTi1–xSnxO3 (0≤ x≤ 0.20) phase diagram from neutron diffraction data. Journal of Applied Crystallography, 49(5), 1726-1733.

DOI: 10.1107/s1600576716013157

Google Scholar

[4] Li, L., Wang, R., Yu, S., Sun, Z., & Zheng, H. (2018). Novel tin-doped BaTiO3 ceramics with non-reducibility and colossal dielectric constant. Materials Letters, 220, 119-121.

DOI: 10.1016/j.matlet.2018.03.015

Google Scholar

[5] Surampalli, A., Schiesaro, I., Corsi, P., Meneghini, C., Sathe, V. G., Sagdeo, A., Sinha, A. K., Aquilanti, G., Welter, E. & Reddy, V. R. (2019). Evidence of structural modifications in the region around the broad dielectric maxima in the 30% Sn-doped barium titanate relaxor. Physical Review B, 100(13), 134104.

DOI: 10.1103/physrevb.100.134104

Google Scholar

[6] Marković, S., Mitrić, M., Cvjetićanin, N., & Uskoković, D. (2007). Preparation and properties of BaTi1−xSnxO3 multilayered ceramics. Journal of the European Ceramic Society, 27(2-3), 505-509.

DOI: 10.1016/j.jeurceramsoc.2006.04.066

Google Scholar

[7] Kola, L., Murali, D., Pal, S., Nanda, B. R. K., & Murugavel, P. (2019). Enhanced bulk photovoltaic response in Sn doped BaTiO3 through composition dependent structural transformation. Applied Physics Letters, 114(18), 183901.

DOI: 10.1063/1.5088635

Google Scholar

[8] Selvaraj, M., Venkatesan, R., Mayandi, J., & Venkatachalapathy, V. (2019). Influence of tin (IV) doping on structural and optical properties of rhombohedral barium titanate (BaTiO3). Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2019.05.302

Google Scholar

[9] Muhsen, K. N. D. K., Osman, R. A. M., & Idris, M. S. (2019). Giant anomalous dielectric behaviour of BaSnO3 at high temperature. Journal of Materials Science: Materials in Electronics, 30(8), 7514-7523.

DOI: 10.1007/s10854-019-01065-x

Google Scholar

[10] Tomar, R., Pandey, R., Singh, N. B., Gupta, M. K., & Gupta, P. (2020). Electrical properties of barium titanate in presence of Sn2+ dopant. SN Applied Sciences, 2(2), 1-7.

DOI: 10.1007/s42452-020-2017-8

Google Scholar

[11] Muhsen, K. N. D. K., Osman, R. A. M., Idris, M. S., Jumali, M. H. H., & Jamil, N. H. B. (2019). Enhancing the dielectric properties of (Ba0.85Ca0.15)(SnxZr0.10−xTi0.90)O3 lead-free ceramics by stannum substitution. Journal of Materials Science: Materials in Electronics, 30(23), 20654-20664.

DOI: 10.1007/s10854-019-02431-5

Google Scholar

[12] Muhsen, K. N. D. K., Osman, R. A. M., & Idris, M. S. (2019). Structure refinement and impedance analysis of Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramics sintered in air and nitrogen. Journal of Materials Science: Materials in Electronics, 30(23), 20673-20686.

DOI: 10.1007/s10854-019-02433-3

Google Scholar

[13] Muhsen, K. N. D. K., Osman, R. A. M., Idris, M. S., Nadzri, N. I. M., & Jumali, M. H. H. (2021). Effect of sintering temperature on (Ba0.85Ca0.15)(SnxZr0.1-xTi0.9)O3 for piezoelectric energy harvesting applications. Ceramics International, 47(9), 13107-13117.

DOI: 10.1016/j.ceramint.2021.01.175

Google Scholar

[14] Irvine, J. T., Sinclair, D. C., & West, A. R. (1990). Electroceramics: characterization by impedance spectroscopy. Advanced materials, 2(3), 132-138.

DOI: 10.1002/adma.19900020304

Google Scholar