Structural Analysis and Dielectric Properties of Oxygen Non-Stoichiometry 5% Fe-Doped BaTiO3 Ceramic

Article Preview

Abstract:

The 5 mol% Fe-doped BaTiO3 ceramic has been synthesized by using solid-state method. The sample was characterized by X-ray diffraction (XRD) and Impedance spectroscopy. It is interesting to note that the sample can developed a phase transformation between 1000 °C to 1350 °C. The XRD results showed that sample exhibited cubic structure when heated at 1000 °C and developed oxygen non-stoichiometry when it was heated at 1350 °C for 8 hours. It was confirmed by the ceramic color changes. The dielectric properties of the sample is relatively low which is due to the oxygen non-stoichiometry effect and gives the dielectric constant, εr value around 150 at 30 °C with frequency 1 kHz. The capacitance value of this sample lies within 10-8 to 10-10 which represents that the electrical properties of the sample has shown bulk and grain boundary response. There are pores that can be observed from the SEM images indicates the porosity of the sample which is in a good agreement with the low dielectric constant value. Moreover, the grains are composed of rectangular orientations, hexagonal shapes and inhomogeneous microstructures that might represent the coexistence of tetragonal and hexagonal phase of the sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jaffe, H. (1958). Piezoelectric ceramics. Journal of the American Ceramic Society, 41(11), 494-498.

DOI: 10.1111/j.1151-2916.1958.tb12903.x

Google Scholar

[2] Muhsen, K. N. D. K., Osman, R. A. M., & Idris, M. S. (2020). The effects of Ca, Zr and Sn substitutions into a ternary system of BaTiO3–BaSnO3–BaZrO3 towards its dielectric and piezoelectric properties: a review. Journal of Materials Science: Materials in Electronics, 1-13.

DOI: 10.1007/s10854-020-03756-2

Google Scholar

[3] Sharma, S., Shamim, K., Ranjan, A., Rai, R., Kumari, P., & Sinha, S. (2015). Impedance and modulus spectroscopy characterization of lead-free barium titanate ferroelectric ceramics. Ceramics International, 41(6), 7713-7722.

DOI: 10.1016/j.ceramint.2015.02.102

Google Scholar

[4] Muhsen, K. N. D. K., Osman, R. A. M., Idris, M. S., Nadzri, N. I. M., & Jumali, M. H. H. (2021). Effect of sintering temperature on (Ba0.85Ca0.15)(SnxZr0.1-xTi0.9)O3 for piezoelectric energy harvesting applications. Ceramics International, 47(9), 13107-13117.

DOI: 10.1016/j.ceramint.2021.01.175

Google Scholar

[5] Luo, B., Wang, X., Tian, E., Song, H., Zhao, Q., Cai, Z., Feng, W. & Li, L. (2018). Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations. Journal of the European Ceramic Society, 38(4), 1562-1568.

DOI: 10.1016/j.jeurceramsoc.2017.10.014

Google Scholar

[6] Rani, A., Kolte, J., Vadla, S. S., & Gopalan, P. (2016). Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics. Ceramics International, 42(7), 8010-8016.

DOI: 10.1016/j.ceramint.2016.01.205

Google Scholar

[7] Gouitaa, N., Lamcharfi, T., Bouayad, M., Abdi, F., & Hadi, N. (2018). Impedance, modulus and conductivity studies of Fe3+ doped BaTiO3 ceramics prepared by solid state method. Journal of Materials Science: Materials in Electronics, 29(8), 6797-6804.

DOI: 10.1007/s10854-018-8666-3

Google Scholar

[8] Wei, X. K., Su, Y. T., Sui, Y., Zhang, Q. H., Yao, Y., Jin, C. Q., & Yu, R. C. (2011). Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO3. Journal of Applied Physics, 110(11), 114112.

DOI: 10.1063/1.3658813

Google Scholar

[9] Keith, G. M., Rampling, M. J., Sarma, K., Alford, N. M., & Sinclair, D. C. (2004). Synthesis and characterisation of doped 6H-BaTiO3 ceramics. Journal of the European Ceramic Society, 24(6), 1721-1724.

DOI: 10.1016/s0955-2219(03)00495-3

Google Scholar

[10] Yusoff, N. H., Osman, R. A. M., Idris, M. S., Muhsen, K. N. D. K., & Nor, N. I. M. (2020, January). Dielectric and structural analysis of hexagonal and tetragonal phase BaTiO3. In AIP Conference Proceedings (Vol. 2203, No. 1, p.020038). AIP Publishing LLC.

DOI: 10.1063/1.5142130

Google Scholar

[11] Voisin, C., Guillemet‐Fritsch, S., Dufour, P., Tenailleau, C., Han, H., & Nino, J. C. (2013). Influence of Oxygen Substoichiometry on the Dielectric Properties of BaTiO3‐δ Nanoceramics Obtained by Spark Plasma Sintering. International Journal of Applied Ceramic Technology, 10, E122-E133.

DOI: 10.1111/ijac.12058

Google Scholar

[12] Hang, Q., Zhou, W., Zhu, X., Zhu, J., Liu, Z., & Al-Kassab, T. (2013). Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics. Journal of Advanced Ceramics, 2(3), 252-259.

DOI: 10.1007/s40145-013-0068-7

Google Scholar

[13] Li, H. M., Ra, C., Zhang, G., Yoo, W. J., Lee, K. W., & Kim, J. D. (2009). Frequency and temperature dependence of the dielectric properties of a PCB substrate for advanced packaging applications. Journal of the Korean Physical Society, 54(3), 1096-1099.

DOI: 10.3938/jkps.54.1096

Google Scholar

[14] Raies, I., Al Dulmani, S. A., Ben Farhat, L., Fadlallah, E. E., & Amami, M. (2020). Temperature-dependent magnetic and electrical properties of Cr-doped AlFeO3 ceramics. Journal of Asian Ceramic Societies, 8(4), 1095-1107.

DOI: 10.1080/21870764.2020.1819516

Google Scholar

[15] Muhsen, K. N. D. K., Osman, R. A. M., & Idris, M. S. (2019). Giant anomalous dielectric behaviour of BaSnO3 at high temperature. Journal of Materials Science: Materials in Electronics, 30(8), 7514-7523.

DOI: 10.1007/s10854-019-01065-x

Google Scholar

[16] Irvine, J. T., Sinclair, D. C., & West, A. R. (1990). Electroceramics: characterization by impedance spectroscopy. Advanced materials, 2(3), 132-138.

DOI: 10.1002/adma.19900020304

Google Scholar