Positive Temperature Coefficient Resistivity (PTCR) Effect of Ba0.8Sr0.2TiO3 Ceramic for Electronic Devices

Article Preview

Abstract:

Barium strontium titanate (BST), Ba0.8Sr0.2TiO3 ceramic prepared using conventional solid-state reaction method has achieved a single phase at 1400 °C. The Ba0.8Sr0.2TiO3 ceramic shows the highest dielectric constant and capacitance at 65°C about 4001 (10 Hz) and 2.92765 x10-9 F, respectively. The conductivity of Ba0.8Sr0.2TiO3 ceramic is in between the range of semi-insulator and insulator materials, and this composition also has exhibited the positive temperature coefficient resistivity (PTCR) properties jump of one order of magnitude from 2.06202 x 107 Ω.cm to 3.00958 x 10 Ω.cm measured at 1 kHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

September 2022

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Dai et al., Direct and indirect measurement of large electrocaloric effect in barium strontium titanate ceramics,, Int. J. Appl. Ceram. Technol., vol. 17, no. 3, p.1354–1361, (2020).

DOI: 10.1111/ijac.13384

Google Scholar

[2] A. Elbasset, S. Sayouri, F. Abdi, T. Lamcharfi, and L. Mrharrab, Effect of Sr addition on piezoelectric properties and the transition temperature of BaTiO3,, Glas. Phys. Chem., vol. 43, no. 1, p.91–97, (2017).

DOI: 10.1134/s1087659617010059

Google Scholar

[3] L. Zhou, P. M. Vilarinho, and J. L. Baptista, Dependence of the Structural and Dielectric Properties of Ba1-xSrxTiO3 Ceramic Solid Solutions on Raw Material Processing,, J. Eur. Ceram. Soc., vol. 19, no. 11, p.2015–2020, (1999).

DOI: 10.1016/s0955-2219(99)00010-2

Google Scholar

[4] Y. Luo, X. Liu, X. Li, and G. Liu, PTCR effect in BaBiO3 -doped BaTiO3 ceramics,, vol. 177, no. 3, p.1543–1546, (2006).

DOI: 10.1016/j.ssi.2006.07.020

Google Scholar

[5] B. Huybrechts, K. Ishizaki, and M. Takata, The positive temperature coefficient of resistivity in barium titanate,, J. Mater. Sci., vol. 30, no. 10, p.2463–2474, (1995).

DOI: 10.1007/bf00362121

Google Scholar

[6] Z. Zhou, Z. Tang, Z. Zhang, and W. Wlodarski, Perovskite oxide of PTCR ceramics as chemical sensors,, Sensors and Actuators, vol. 77, p.22–26, (2001).

DOI: 10.1016/s0925-4005(01)00667-0

Google Scholar

[7] M. Guo, N. Masó, Y. Liu, and A. R. West, Electrical Properties and Oxygen Stoichiometry of Ba1-xSrxTiO3-δ Ceramics,, Inorg. Chem., vol. 57, no. 1, p.64–71, (2018).

Google Scholar

[8] D. Sinclair, Characterization of Electro-materials using ac Impedance Spectroscopy,, Boletín la Soc. Española Cerámica y Vidr., vol. 34, no. 2, p.55–65, (1995).

Google Scholar

[9] K. N. D. Ku Muhsen, R. A. Maulat Osman, and M. S. Idris, Giant anomalous dielectric behaviour of BaSnO3 at high temperature,, J. Mater. Sci. Mater. Electron., vol. 0, no. 0, p.0, (2019).

DOI: 10.1007/s10854-019-01065-x

Google Scholar

[10] A. J. Moulson and J. M. Herbert, Electroceramics : Materials, Properties, Applications, vol. 9. (2003).

Google Scholar

[11] J. Krupka, Frequency domain complex permittivity measurements at microwave frequencies,, Meas. Sci. Technol., vol. 17, no. 6, (2006).

DOI: 10.1088/0957-0233/17/6/r01

Google Scholar

[12] N. Pour Aryan, Design and Modeling of Inductors, Capacitors and Coplanar Waveguides at Tens of GHz Frequencies,, (2015).

DOI: 10.1007/978-3-319-10187-3

Google Scholar