Microstructural Characterization of Polylactide/Poly ɛ-Caprolactone Blends for Plate Fixation Internal Application

Article Preview

Abstract:

The recovery of a fractured femur using the plate and screw internal fixation. The plate internal fixation is made of metal has good mechanical strength, but causes allergic reactions, secondary surgery, stress shielding and high costs. Evaluation of the lack of metal, now developed biodegradable polymers use Polylactide (PLA) and Poly ɛ-caprolactone (PCL). The advantages of PLA and PCL materi-als can control the rate of degradation and increase mechanical strength. Manufac-turing processes of the plate fixation internal using cold isotactic pressing. Inde-pendent variable on the PLA/PCL blends from 90/10, 80/20, 70/30, and 60/40 wt% and tested for FTIR, XRD, SEM, density and porosity. Result from adding PCL make the degree of crystallinity is decreased significantly. The formation of semi-crystalline the with peak width smaller and the crystal size bigger in the 60PLA sample. PLA/PCL blends largely formed bonding and some immiscibility in the form of small flakes and cavities after the addition of PCL content. Large cavities reduce density and increase porosity which can affect mechanical proper-ties. 90PLA sample has high density and low porosity of 1,186 g/cm3 and 4% porosity, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-17

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Boonthum Wongchai.: The Effect of the Configuration of the Screw Fixation on the Interfragmentary Strain, American Journal of Applied Sciences, vol. 9, no. 6, pp.842-845 (2012).

DOI: 10.3844/ajassp.2012.842.845

Google Scholar

[2] Saidpour, S.H., Richardson, M.O.W.: Glass fibre coating for optimum mechanical properties of vinyl ester composite. Composites Part A.;28; pp.495-504 (1997).

DOI: 10.1016/s1359-835x(97)00071-7

Google Scholar

[3] Triyono, J., Alfiansyah, R., Sukanto, H., Ariawan, D., & Nugroho, Y.: Fabrication and characterization of porous bone scaffold of bovine hydroxyapatite-glycerin by 3D printing technology. Bioprinting, e00078.

DOI: 10.1016/j.bprint.2020.e00078

Google Scholar

[4] Toro, P., Quijada, R., Yazdani-Pedram, M., Arias, J.L.: Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 61 (22), 4347–4350. http://dx.doi.org/10.1016/j. matlet.2007.01.102 (2007).

DOI: 10.1016/j.matlet.2007.01.102

Google Scholar

[5] Böstman O., Pihlajamäki H.: Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials ;21:2615-21 (2000).

DOI: 10.1016/s0142-9612(00)00129-0

Google Scholar

[6] Eppley BL., Sadove AM.: A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast Reconstr Surg 1995;96:316Y322 (1995).

DOI: 10.1097/00006534-199508000-00009

Google Scholar

[7] Bos RRM., Rozema FR., Boering G., et al.: Degradation and tissue reactions to biodegradable poly(L-lactide) for use as an internal fixation of fractures: a study in rats. Biomaterials;12:32Y38 (1991).

DOI: 10.1016/0142-9612(91)90128-w

Google Scholar

[8] Yusra Firdaus.: Kenapa Patah Tulang Pada Anak Lebih Cepat Sembuh Dari pada Orang Dewasa, Kesehatan Muskuloskeletal Patah Tulang, https://hellosehat.com/ last accessed 2019/6/2.

DOI: 10.46576/djtechno.v3i2.2735

Google Scholar

[9] Jun-Wei Lil., et.al.: Application of Biodegradable Materials in Orthopedics, Journal of Medical and Biological Engineering https://doi.org/10.1007/s40846-019-00469-8, Taiwanese Society of Biomedical Engineering (2019).

Google Scholar

[10] Pietrzykowska, E., Romelczyk-Baishya, B., Wojnarowicz, J., Sokolova, M., Szlazak, K., Swieszkowski, W.,Lojkowski, W.:Preparation of a Ceramic Matrix Composite Made of Hydroxyapatite Nanoparticles and Polylactic Acid by Consolidation of Composite Granules. Nanomaterials, 10(6), 1060.

DOI: 10.3390/nano10061060

Google Scholar

[11] T. Xu, Q., Yao, J.M. Miszuk., H.J. Sanyour., Z. Hong., H. Sun., H. Fong.: Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells, Colloids and Surfaces B: Biointerfaces. Volume 171, 1 November 2018, Pages 31-39 (2018).

DOI: 10.1016/j.colsurfb.2018.07.004

Google Scholar

[12] Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R.: Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453–463.

DOI: 10.1002/pi.5079

Google Scholar

[13] Guangyao Xiong., Yanjiao Nie., Dehui Ji, Jing Li., Chunzhi Li., Wei Li., Yong Zhu., Honglin Luo., Yizao Wan.: Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Current Applied Physics, 16(8), 830–836.

DOI: 10.1016/j.cap.2016.05.004

Google Scholar

[14] Balbinotti P., Gemelli E., Buerger G., de Lima SA., de Jesus J., Camargo NHA., et al.: Microstructure Development on Sintered Ti/HA Biocomposites Produced by Powder Metallurgy. Mater Res-Ibero-Am J. ;14:384-93 (2011).

DOI: 10.1590/s1516-14392011005000044

Google Scholar

[15] Mamun A., Rahman SMM., Roland S., Mahmood R.: J Polym Environ 26:3511(2018).

Google Scholar

[16] Elzein T., Nasser-Eddine M., Delaite C et al.: J Colloid Interface Sci 273:381 (2004).

Google Scholar

[17] Hossain KMZ, Parsons AJ, Rudd CD, Ahmed I, Thielemans W.: Mechanical, crystallisation and moisture absorption properties of melt drawn polylactic acid fibres. Eur Polym J 53:270–281 (2014).

DOI: 10.1016/j.eurpolymj.2014.02.001

Google Scholar

[18] Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J. M., & Peponi, L.: Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 132, 97–108.

DOI: 10.1016/j.polymdegradstab.2016.03.037

Google Scholar

[19] Boland ED, Pawlowski KJ and Barnes CP et al.: Electrospinning of bioresorbable polymer for tissue engineering scaffolds[M]. USA Washington: AMER CHEMICAL SOC, 918: 188-204 (2006).

Google Scholar

[20] Haroosh HJ, Chaudhary DS and Dong Y.: Electrospun PLA/PCL fibers with tubular microclay: Morphological and structural analysis [J]. Journal of Applied Polymer Science; 124(5): 3930-3939 (2012).

DOI: 10.1002/app.35448

Google Scholar

[21] Hou, A.-L., & Qu, J.-P.: Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending. Polymers, 11(5), 771.

DOI: 10.3390/polym11050771

Google Scholar

[22] Wachirahuttapong, S., Thongpin, C., & Sombatsompop, N.: Effect of PCL and Compatibility Contents on the Morphology, Crystallization and Mechanical Properties of PLA/PCL Blends. Energy Procedia, 89, 198–206.

DOI: 10.1016/j.egypro.2016.05.026

Google Scholar

[23] Jiao, Z., Luo, B., Xiang, S., Ma, H., Yu, Y., & Yang, W.: 3D printing of HA / PCL composite tissue engineering scaffolds. Advanced Industrial and Engineering Polymer Research.

DOI: 10.1016/j.aiepr.2019.09.003

Google Scholar

[24] Albertsson, A.C.: Degradable Aliphatic Polyesters., Vol. 157., Springer, hal 179 (2020). 24.

Google Scholar

[25] Noroozi, N., Schafer, L. L. and Hatzikiriakos, S. G.: Thermorheological properties of poly (ε-caprolactone)/polylactide blends. Polym Eng Sci; p.2348–2359 (2012).

DOI: 10.1002/pen.23186

Google Scholar

[26] P. Molinero-Mourelle., S. Canals, M. Gomez-Polo., M. Fernanda Sola-Ruiz., J. del Rio Highsmith.: A. Celemin Vinuela, Polylactic Acid as a Material for Three-Dimensional Printing of Provisional Restorations, International Journal of Prosthodontics 31(4) 349-350 (2018).

DOI: 10.11607/ijp.5709

Google Scholar

[27] Liao, Y., Liu, C., Coppola, B., Barra, G., Di Maio, L., Incarnato, L., & Lafdi, K.: Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers, 11(9), 1487.

DOI: 10.3390/polym11091487

Google Scholar

[28] Callister Jr., William D.: Materials Science And Engineering An Introduction, 8th Edition, New Jersey : John Wiley & Sons, Inc, Hoboken (2009).

Google Scholar