The Effect of Temperature Controller on the Gasification Performance Using Downdraft Gasifier with Three-Stages Gasifying Agent

Article Preview

Abstract:

Gasification is a technology that can convert biomass into alternative energy. Temperature control in this study is used to control the temperature in the oxidation zone of the gasification process. The weakness in the gasification process is the instability of the syngas produced as a result of the changes in temperature and raw materials in the reactor. Thus, one way to stabilize the syngas produced in the gasification reactor is to control the temperature by controlling the rotational speed of the blower. In this study, the gasification reactor used was a downdraft gasifier type with a 3-level air input made from palm hemp pellets. The results of the study that the performance indicators for gasification without temperature control obtained syngas composition results CO = 21.12 % v, H2 = 12.39 % v, and CH4 = 1.33 % v. The calorific value (LHV) of syngas is 4524.97 kJ/kg, the efficiency of cold gas is 58.34%, and the tar content is 77.33 mg/Nm3. While gasification with temperature control results obtained syngas composition CO = 26.12% v, H2 = 9.3% v, and CH4 = 1.32% v. The calorific value (LHV) is 4746.82 kJ/kg, the efficiency of cold gas is 61.23%, and the tar content is 60.95 mg/Nm3. The results obtained using temperature control showed an increase in LHV of about 4.9%, an increase in gas efficiency of 2.89% cold, and a decrease in tar content of 16.4 mg/Nm3. The results of this study can be used to further optimize the syngas gasification process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-58

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Aprianti, K. Nisa, and L. H. Saputri, Potensi Pelepah Daun Kelapa Sawit Untuk Pembuatan Tinta Printer,, Pros. Semin. Nas. Apl. Sains Teknol., p.2021, (2021).

Google Scholar

[2] S. Yokoyama, Buku Panduan Biomassa Asia: Panduan untuk Produksi dan Pemanfaatan Biomassa.,, Japan Inst. Energy, 2008, [Online]. Available: http://www.jie.or.jp/biomass/ AsiaBiomassHandbook/Indonesian/All_I.pdf.

Google Scholar

[3] U. Arena, Process and technological aspects of municipal solid waste gasification . A review,, Waste Manag., vol. 32, no. 4, p.625–639, 2012,.

DOI: 10.1016/j.wasman.2011.09.025

Google Scholar

[4] A. Molino, S. Chianese, and D. Musmarra, Biomass gasification technology: The state of the art overview,, J. Energy Chem., vol. 25, no. 1, p.10–25, 2016,.

DOI: 10.1016/j.jechem.2015.11.005

Google Scholar

[5] A. A. P. Susastriawan, H. Saptoadi, and Purnomo, Small-scale downdraft gasifiers for biomass gasification: A review,, Renew. Sustain. Energy Rev., vol. 76, no. March, p.989–1003, 2017,.

DOI: 10.1016/j.rser.2017.03.112

Google Scholar

[6] V. Belgiorno, G. De Feo, C. Della Rocca, and R. M. A. Napoli, Energy from gasification of solid wastes,, vol. 23, p.1–15, (2003).

DOI: 10.1016/s0956-053x(02)00149-6

Google Scholar

[7] K. Jaojaruek, S. Jarungthammachote, M. Kathrina, B. Gratuito, and H. Wongsuwan, Bioresource Technology Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air / gas supply approach,, Bioresour. Technol., vol. 102, no. 7, p.4834–4840, 2011,.

DOI: 10.1016/j.biortech.2010.12.024

Google Scholar

[8] F. C. Luz et al., Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil,, Energy Convers. Manag., vol. 103, p.321–337, 2015,.

DOI: 10.1016/j.enconman.2015.06.074

Google Scholar

[9] W. Doherty, A. Reynolds, and D. Kennedy, Aspen Plus Simulation of Biomass Gasification in a Steam Blown Dual Fluidised Bed,, (2013).

Google Scholar

[10] G. N. A. S. D. Y. Prasetya, M. Sucipta, and I. N. Suprapta, Perancangan Gasifikasi Downdraft dengan Variasi Laju Aliran Oksigen sebagai Agen Gasifikasi,, Mettek, vol. 1, no. 2, p.1–8, (2015).

Google Scholar

[11] A. L. Galindo, E. S. Lora, R. V. Andrade, S. Y. Giraldo, R. L. Jaén, and V. M. Cobas, Biomass gasification in a downdraft gasifier with a two-stage air supply: Effect of operating conditions on gas quality,, Biomass and Bioenergy, vol. 61, p.236–244, 2014,.

DOI: 10.1016/j.biombioe.2013.12.017

Google Scholar

[12] B. Sudarmanta, D. B. Murtadji, and D. F. Wulandari, Karakterisasi Gasifikasi Biomassa Sekam Padi Menggunakan Reaktor Downdraft dengan Dua Tingkat Laluan Udara,, Semin. Nas. Tah. Tek. Mesin, no. March, p.11–14, (2009).

DOI: 10.21107/rekayasa.v15i1.12895

Google Scholar

[13] A. R. Saleh, B. Sudarmanta, H. Fansuri, and O. Muraza, Syngas production from municipal solid waste with a reduced tar yield by three-stages of air inlet to a downdraft gasifier,, Fuel, vol. 263, no. October 2019, p.116509, 2020,.

DOI: 10.1016/j.fuel.2019.116509

Google Scholar

[14] N. Striugas, K. Zakarauskas, A. Džiugys, R. Navakas, and R. Paulauskas, An evaluation of performance of automatically operated multi-fuel downdraft gasifier for energy production,, Appl. Therm. Eng., vol. 73, no. 1, p.1151–1159, 2014,.

DOI: 10.1016/j.applthermaleng.2014.09.007

Google Scholar

[15] I. Yuwono and B. Sudarmanta, Municipal Solid Waste Dengan Reaktor,, no. Tm 142501, (2016).

Google Scholar

[16] N. Kaliyan, R. V. Morey, M. D. White, and A. Doering, Roll Press Briquetting and Pelleting of Corn Stover and Switchgrass,, Trans. ASABE, vol. 52, no. 2, p.543–555, 2009,.

DOI: 10.13031/2013.26812

Google Scholar

[17] S. A. Sulaiman, S. M. Atnaw, and M. N. Z. Moni, EXPERIMENTAL STUDY ON TEMPERATURE PROFILE OF FIXED-BED GASIFICATION OF OIL-PALM FRONDS,, vol. 1, no. 2009, p.1–2, (2012).

DOI: 10.1063/1.4704222

Google Scholar

[18] P. Basu, Biomass gasification and pyrolysis, vol. 5. (2010).

Google Scholar

[19] R. J. Evans and T. A. Milne, Chemistry of Tar Formation and Maturation in the Thermochemical Conversion of Biomass,, Dev. Thermochem. Biomass Convers., no. November, p.803–816, 1997,.

DOI: 10.1007/978-94-009-1559-6_64

Google Scholar

[20] D. Li, C. Briens, and F. Berruti, Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air,, Biomass and Bioenergy, vol. 76, p.96–107, 2015,.

DOI: 10.1016/j.biombioe.2015.03.007

Google Scholar

[21] T. B. Reed and A. Das, Handbook of Biomass Downdraft Gasifier Engine Systems,, SERI . U.S. Dep. Energy, no. March, p.148, (1988).

DOI: 10.2172/5206099

Google Scholar

[22] A. R. Saleh, B. Sudarmanta, and D. R. Ependi, Numerical Analysis of Heterogeneous Oxidation Reaction on Multi-stage Air Inlet Downdraft Gasifier,, IOP Conf. Ser. Mater. Sci. Eng., vol. 588, no. 1, 2019,.

DOI: 10.1088/1757-899x/588/1/012025

Google Scholar

[23] B. Sudarmanta, A. Gafur, A. R. Saleh, B. A. Dwiyantoro, and Sampurno, The effect of two stage gasifying agent on biomass downdraft gasification to the gasifier performance,, AIP Conf. Proc., vol. 1983, no. July, 2018,.

DOI: 10.1063/1.5046233

Google Scholar

[24] J. D. Martínez, E. E. Silva Lora, R. V. Andrade, and R. L. Jaén, Experimental study on biomass gasification in a double air stage downdraft reactor,, Biomass and Bioenergy, vol. 35, no. 8, p.3465–3480, 2011,.

DOI: 10.1016/j.biombioe.2011.04.049

Google Scholar

[25] H. Shi, W. Si, and X. Li, The Concept, Design and Performance of a Novel Rotary Kiln Type Air-Staged Biomass Gasifier,, Energies, 2016,.

DOI: 10.3390/en9020067

Google Scholar

[26] S. C. Bhattacharya, S. Shwe Hla, and H. L. Pham, A study on a multi-stage hybrid gasifier-engine system,, Biomass and Bioenergy, vol. 21, no. 6, p.445–460, 2001,.

DOI: 10.1016/s0961-9534(01)00048-4

Google Scholar

[27] V. R. Patel, D. S. Upadhyay, and R. N. Patel, Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier,, Energy, vol. 78, p.323–332, 2014,.

DOI: 10.1016/j.energy.2014.10.017

Google Scholar

[28] T. Bui, R. Loof, and S. C. Bhattacharya, Multi-stage reactor for thermal gasification of wood,, Energy, vol. 19, no. 4, p.397–404, 1994,.

DOI: 10.1016/0360-5442(94)90118-x

Google Scholar

[29] A. N. A. El-Hendawy, Surface and adsorptive properties of carbons prepared from biomass,, Appl. Surf. Sci., vol. 252, no. 2, p.287–295, 2005,.

DOI: 10.1016/j.apsusc.2004.11.092

Google Scholar

[30] T. Y. Mun, P. G. Seon, and J. S. Kim, Production of a producer gas from woody waste via air gasification using activated carbon and a two-stage gasifier and characterization of tar,, Fuel, vol. 89, no. 11, p.3226–3234, 2010,.

DOI: 10.1016/j.fuel.2010.05.042

Google Scholar