Preparation and Characterization of Hydroxyapatite/Zinc Composites with Alginate for Bone Scaffold Application

Article Preview

Abstract:

Studies on hydroxyapatite are plentiful since the compounds are alike to the bone and sometimes combined with Zn to fabricate a longstanding structure and improve cell regeneration. However, construct a 3D model of HAp-Zn through sintering required high energy. Therefore, this study performed a low-temperature process using alginate, taking a role as a matrix, to achieve an interconnected porous structure while maintaining mechanical properties. The variations of alginate concentrations (0%, 2%, 4%, and 6%) were mixed with HAp-Zn powder using PBS and CaCl2. The bone scaffold was then characterized using XRD, FTIR, SEM, and compressive test. The XRD result showed that alginate addition did not change the HAp-Zn structure and phase. The degree of crystallinity and crystallite size was found to decrease with the increasing composition of alginate. The FTIR spectra also displayed an intermolecular interaction between HAp-Zn and SA. On the other hand, the SEM observation contained well interconnectivity with 50-200 μm of pore size. It led to an incline in ultimate compressive strength and modulus of elasticity with the uppermost value was 2.05 ± 0.06 MPa and 0.037 ± 0.001 GPa respectively in 6% of alginate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. A. Ofudje, A. I. Adeogun, M. A. Idowu, and S. O. Kareem, Synthesis and characterization of Zn-Doped Hydroxyapatite: Scaffold Application, Antibacterial and Bioactivity Studies, Heliyon, vol. 5, no. 5, (2019) 1–12.

DOI: 10.1016/j.heliyon.2019.e01716

Google Scholar

[2] M. A. Louyeh, Silver, Magnesium and Zinc Substituted Hydroxyapatite for Orthopaedic Applications. May (2016) 34.

Google Scholar

[3] D. T. Agustiningtyas, G. Umindya, N. Tajalla, and N. Sasria, Pembuatan Hidroksiapatit Doping Zn Dengan Menggunakan Bantuan Radiasi Gelombang Mikro, Balikpapan, (2020).

Google Scholar

[4] M. Safari Gezaz, S. Mohammadi Aref, and M. Khatamian, Investigation of Structural Properties of Hydroxyapatite/Zinc Oxide Nanocomposites; an Alternative Candidate for Replacement in Recovery of Bones in Load-Tolerating Areas, Materials Chemistry and Physics 226 (2019) 169–176.

DOI: 10.1016/j.matchemphys.2019.01.005

Google Scholar

[5] M. Akram, A. Z. Alshemary, Y. F. Goh, W. A. Wan Ibrahim, H. O. Lintang, and R. Hussain, Continuous Microwave Flow Synthesis of Mesoporous Hydroxyapatite, Materials Science and Engineering C 56 (2015) 356–362.

DOI: 10.1016/j.msec.2015.06.040

Google Scholar

[6] N. Thadavirul, P. Pavasant, and P. Supaphol, Development of Polycaprolactone Porous Scaffolds by Combining Solvent Casting, Particulate Leaching, and Polymer Leaching Techniques for Bone Tissue Engineering, J Biomed Mater Res Part A (2014):102A:3379–3392.

DOI: 10.1002/jbm.a.35010

Google Scholar

[7] M. Rajkumar, N. Meenakshisundaram, and V. Rajendran, Development of Nanocomposites Based on Hydroxyapatite/Sodium Alginate: Synthesis and Characterisation, Mater. Charact., vol. 62, no. 5, (2011) 469–479.

DOI: 10.1016/j.matchar.2011.02.008

Google Scholar

[8] A. A. Maharani, A. Husni, and N. Ekantari, Karakteristik Natrium Alginat Rumput Laut Cokelat Sargassum Fluitans dengan Metode Ekstraksi yang Berbeda, Jphpi, vol. 20, no. 3, (2017) 478–487.

Google Scholar

[9] S. Alborzi, Encapsulation of Folic Acid in Sodium Alginate-Pectin-Poly (Ethylene Oxide) Electrospun Fibers to Increase Its Stability, Canada, (2012).

DOI: 10.3109/02652048.2012.696153

Google Scholar

[10] F. A. Siswoyo, Kumalasari, Sari Wulan, Fabrikasi Perancah Berpori Hidroksiapatit dari Tulang Ikan Tenggiri dengan Alginat Sebagai Binder Alami: Sebuah Kajian Naratif, J. Pendidik. Fis. dan Sains, vol. 3, no. 2 (2020) 35–42.

DOI: 10.52188/jpfs.v3i2.82

Google Scholar

[11] T. W. Bintarti, Sintesis dan Karakterisasi Bone Graft Berbasis Hidroksiapatit dan Alginat, J. Chem. Inf. Model., (2012).

Google Scholar

[12] H. H. Indrani, Decky J., Emil Budiyanto, Preparation and Characterization of Porous Hydroxyapatite and Alginate Composite Scaffolds for Bone Tissue Engineering, Int. J. Appl. Pharm., vol. 9, no. 2 (2017) 98–102.

DOI: 10.22159/ijap.2017.v9s2.24

Google Scholar

[13] Purnawan Gunawan, Sunarmasto, and Andi Dwi Yunanto, Studi Kuat Tekan, Kuat Tarik Belah, dan Modulus Elastisitas Beton Ringan Teknologi Foam dengan Bahan Tambah Serat Polyester, Matriks Tek. Sipil, vol. 3 (2014) 619–627.

DOI: 10.20961/mateksi.v9i3.54494

Google Scholar

[14] N. Nuha, N. Nurlely, and Y. W. Sari, Influence of Microwave Irradiation Time and Cross-Linker Additions on Synthesis of Hydroxyapatite-Alginate (HA-Alginate) Composite, J. Phys. Conf. Ser., vol. 1505, no. 1, (2020).

DOI: 10.1088/1742-6596/1505/1/012058

Google Scholar

[15] F. Afriani, Perancah Berpori Hidroksiapatit dan β-Tricalcium Phosphate dari Limbah Cangkang Telur Ayam dengan Porogen Alginat Fitri Afriani, (2015).

DOI: 10.52188/jpfs.v3i2.82

Google Scholar

[16] J. N. Setiadiputri, Sintesis dan Karakterisasi Biokomposit Hidroksiapatit-Alginat-Zinc Sebagai Bone Graft untuk Penanganan Bone Defect, J. Chem. Inf. Model., vol. 53, no. 9 (2018) 1–102.

Google Scholar

[17] M. R. Aufan, A. H. Daulay, D. Indriani, and A. Nuruddin, Sintesis Scaffold Alginat-Kitosan-Karbonat Apatit Sebagai Bone Graft Menggunakan Metode, J. Biofisika, vol. 8, no. 1, (2012) 16–24.

Google Scholar

[18] L. El Milla, D. J. Indrani, and B. Irawan, Sintesis dan Uji Porositas Scaffold Hidroksiapatit/Alginat, ODONTO Dent. J., vol. 5, no. 1, (2018) 49.

DOI: 10.30659/odj.5.1.49-53

Google Scholar

[19] N. N. Pradita, Pengaruh Penambahan Kitosan Terhadap Biokompatibilitas Komposit Kitosan–Hidroksiapatit Terdoping Seng Sebagai Kandidat Material Pengganti Tulang (Bone Substitute), (2016).

Google Scholar

[20] V. P. Orlovskii, V. S. Komlev, and S. M. Barinov, Hydroxyapatite and Hydroxyapatite-Based Ceramics, Inorg. Mater., vol. 38, no. 10, (2002) 973–984.

DOI: 10.1023/a:1020585800572

Google Scholar