[1]
P. Brazdausks, A. Paze, J. Rizhikovs, M. Puke, K. Meile, N. Vedernikovs, R. Tupciauskas, M. Andzs, Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives, Biomass and Bioenergy. 89 (2016) 98-104
DOI: 10.1016/J.BIOMBIOE.2016.01.016
Google Scholar
[2]
A. Ghosh, J.L. Brown, R.G. Smith, R.C. Brown, Hydrolysis of anhydrosugars derived from pyrolysis of lignocellulosic biomass for integration in a biorefinery, Sustain. Energy Fuels. 7 (2023) 3361-3374
DOI: 10.1039/D3SE00240C
Google Scholar
[3]
X. Zhang, W. Yang, C. Dong, Levoglucosan formation mechanisms during cellulose pyrolysis, J. Anal. Appl. Pyrolysis. 104 (2013) 19-27
DOI: 10.1016/J.JAAP.2013.09.015
Google Scholar
[4]
J.C. del Río, A. Gutiérrez, I.M. Rodríguez, D. Ibarra, Á.T. Martínez, Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR, J. Anal. Appl. Pyrolysis. 79(1-2) (2007) 39-46
DOI: 10.1016/J.JAAP.2006.09.003
Google Scholar
[5]
L. Chang, W. Wei, K. Sun, Y.H. Hu, Excellent performance of highly conductive porous Na-embedded carbon nanowalls for electric double-layer capacitors with a wide operating temperature range, J. Mater. Chem. A. 5(19) (2017) 9090-9096. https://doi.org/
DOI: 10.1039/C7TA01085K
Google Scholar
[6]
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science. 334(6058) (2011) 928-935
DOI: 10.1126/science.1212741
Google Scholar
[7]
M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. Del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44(1) (2014) 250-290
DOI: 10.1039/C4CS00232F
Google Scholar
[8]
A. Volperts, A. Plavniece, G. Dobele, A. Zhurinsh, I. Kruusenberg, K. Kaare, J. Locs, L. Tamasauskaite-Tamasiunaite, E. Norkus, Biomass based activated carbons for fuel cells, Renew. Energy. 141 (2019) 40-45
DOI: 10.1016/j.renene.2019.04.002
Google Scholar
[9]
A. Volperts, A. Plavniece, K. Kaare, G. Dobele, A. Zhurinsh, I. Kruusenberg, Influence of Chemical Activation Temperatures on Nitrogen-Doped Carbon Material Structure, Pore Size Distribution and Oxygen Reduction Reaction Activity, Catalysts. 11(12) (2021) 1460
DOI: 10.3390/CATAL11121460
Google Scholar
[10]
A. Plavniece, G. Dobele, A. Volperts, D. Djachkovs, L. Jashina, O. Bikovens, A. Zhurinsh, Effect of the pretreatment on the porosity of the hybrid activated carbons prepared from wood-based solid and liquid precursors, Wood Sci. Technol. 56 (2022) 1743-1759
DOI: 10.1007/S00226-022-01432-8
Google Scholar
[11]
X. Liu, P. Song, B. Wang, Y. Wu, Y. Jiang, F. Xu, X. Zhang, Lignosulfonate-Directed Synthesis of Consubstantial Yolk-Shell Carbon Microspheres with Pollen-Like Surface from Sugar Biomass, ACS Sustain. Chem. Eng. 6(12) (2018) 16315-16322
DOI: 10.1021/acssuschemeng.8b03246
Google Scholar
[12]
A. Zhurinsh, G. Dobele, V. Jurkjane, K. Meile, A. Volperts, A. Plavniece, Impact of hot water pretreatment temperature on the pyrolysis of birch wood, J. Anal. Appl. Pyrolysis. 124 (2017) 515-522
DOI: 10.1016/j.jaap.2017.01.030
Google Scholar
[13]
K. Meile, E. Volkova, A. Jermolajeva, A. Zhurinsh, Antioxidant Activity of Lignocellulose Pyrolysis by-Products after Levoglucosan Separation, Key Eng. Mater. 933 (2022) 169-175
DOI: 10.4028/P-SFQRRU
Google Scholar
[14]
G.R. Mong, C.T. Chong, W.W.F. Chong, J.H. Ng, H.C. Ong, V. Ashokkumar, M.V. Tran, S. Karmakar, B.H.H. Goh, M.F. Mohd Yasin, Progress and challenges in sustainable pyrolysis technology: Reactors, feedstocks and products, Fuel. 324 (2022) 124777
DOI: 10.1016/J.FUEL.2022.124777
Google Scholar