Utilization of Levoglucosan Production By-Products

Article Preview

Abstract:

Biorecycling of wood includes many different processes aimed at the complete utilization of the main and by-products. The complete isolation of C5 and C6 sugars from wood and their further use is currently attracting attention worldwide. The C5 sugars can be catalytically converted directly into furfural or into monosaccharides’ aqueous solution for further hydrolytic treatment. The resulting lignocellulose can be used in thermochemical pyrolysis (350-400°C) for the synthesis of levoglucosan. The biochar formed during pyrolysis and the liquid residue after the isolation of levoglucosan are by-products and can be used as precursors to obtain valuable products – activated carbon composites for supercapacitor electrodes and catalysts in fuel cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-19

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Brazdausks, A. Paze, J. Rizhikovs, M. Puke, K. Meile, N. Vedernikovs, R. Tupciauskas, M. Andzs, Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives, Biomass and Bioenergy. 89 (2016) 98-104

DOI: 10.1016/J.BIOMBIOE.2016.01.016

Google Scholar

[2] A. Ghosh, J.L. Brown, R.G. Smith, R.C. Brown, Hydrolysis of anhydrosugars derived from pyrolysis of lignocellulosic biomass for integration in a biorefinery, Sustain. Energy Fuels. 7 (2023) 3361-3374

DOI: 10.1039/D3SE00240C

Google Scholar

[3] X. Zhang, W. Yang, C. Dong, Levoglucosan formation mechanisms during cellulose pyrolysis, J. Anal. Appl. Pyrolysis. 104 (2013) 19-27

DOI: 10.1016/J.JAAP.2013.09.015

Google Scholar

[4] J.C. del Río, A. Gutiérrez, I.M. Rodríguez, D. Ibarra, Á.T. Martínez, Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR, J. Anal. Appl. Pyrolysis. 79(1-2) (2007) 39-46

DOI: 10.1016/J.JAAP.2006.09.003

Google Scholar

[5] L. Chang, W. Wei, K. Sun, Y.H. Hu, Excellent performance of highly conductive porous Na-embedded carbon nanowalls for electric double-layer capacitors with a wide operating temperature range, J. Mater. Chem. A. 5(19) (2017) 9090-9096. https://doi.org/

DOI: 10.1039/C7TA01085K

Google Scholar

[6] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science. 334(6058) (2011) 928-935

DOI: 10.1126/science.1212741

Google Scholar

[7] M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. Del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44(1) (2014) 250-290

DOI: 10.1039/C4CS00232F

Google Scholar

[8] A. Volperts, A. Plavniece, G. Dobele, A. Zhurinsh, I. Kruusenberg, K. Kaare, J. Locs, L. Tamasauskaite-Tamasiunaite, E. Norkus, Biomass based activated carbons for fuel cells, Renew. Energy. 141 (2019) 40-45

DOI: 10.1016/j.renene.2019.04.002

Google Scholar

[9] A. Volperts, A. Plavniece, K. Kaare, G. Dobele, A. Zhurinsh, I. Kruusenberg, Influence of Chemical Activation Temperatures on Nitrogen-Doped Carbon Material Structure, Pore Size Distribution and Oxygen Reduction Reaction Activity, Catalysts. 11(12) (2021) 1460

DOI: 10.3390/CATAL11121460

Google Scholar

[10] A. Plavniece, G. Dobele, A. Volperts, D. Djachkovs, L. Jashina, O. Bikovens, A. Zhurinsh, Effect of the pretreatment on the porosity of the hybrid activated carbons prepared from wood-based solid and liquid precursors, Wood Sci. Technol. 56 (2022) 1743-1759

DOI: 10.1007/S00226-022-01432-8

Google Scholar

[11] X. Liu, P. Song, B. Wang, Y. Wu, Y. Jiang, F. Xu, X. Zhang, Lignosulfonate-Directed Synthesis of Consubstantial Yolk-Shell Carbon Microspheres with Pollen-Like Surface from Sugar Biomass, ACS Sustain. Chem. Eng. 6(12) (2018) 16315-16322

DOI: 10.1021/acssuschemeng.8b03246

Google Scholar

[12] A. Zhurinsh, G. Dobele, V. Jurkjane, K. Meile, A. Volperts, A. Plavniece, Impact of hot water pretreatment temperature on the pyrolysis of birch wood, J. Anal. Appl. Pyrolysis. 124 (2017) 515-522

DOI: 10.1016/j.jaap.2017.01.030

Google Scholar

[13] K. Meile, E. Volkova, A. Jermolajeva, A. Zhurinsh, Antioxidant Activity of Lignocellulose Pyrolysis by-Products after Levoglucosan Separation, Key Eng. Mater. 933 (2022) 169-175

DOI: 10.4028/P-SFQRRU

Google Scholar

[14] G.R. Mong, C.T. Chong, W.W.F. Chong, J.H. Ng, H.C. Ong, V. Ashokkumar, M.V. Tran, S. Karmakar, B.H.H. Goh, M.F. Mohd Yasin, Progress and challenges in sustainable pyrolysis technology: Reactors, feedstocks and products, Fuel. 324 (2022) 124777

DOI: 10.1016/J.FUEL.2022.124777

Google Scholar