Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography

Article Preview

Abstract:

In this study, we used Stereolithography to develop tricalcium phosphate-based scaffolds. The feedstock for the process consisted of a UV-curable resin, synthetic tricalcium phosphate, and silicon oxide. The viscosity and curability of the resins are carefully controlled to enable the fabrication of complex-shaped scaffolds. Following stereolithography, the ceramic-resin scaffolds were heat treated. The first step was debinding process followed by a sintering step. The resulting sintered samples underwent microstructure, chemical, and mechanical analysis to assess their properties. The optimized samples were then subjected to biodegradability and cytotoxicity tests to evaluate their suitability for use as tissue engineering scaffolds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mat. Today. 16(12) (2013) 496-504

DOI: 10.1016/j.mattod.2013.11.017

Google Scholar

[2] M.L. Griffith, J.W. Halloran, Ultraviolet curing of highly loaded ceramic suspensions for stereolithography of ceramics, Solid Free. Fabr. Symp. (1994) 396-403.

Google Scholar

[3] F.P. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomat. 31(24) (2010) 6121-6130

DOI: 10.1016/j.biomaterials.2010.04.050

Google Scholar

[4] M. Pfaffinger, G. Mitteramskogler, R. Gmeiner, J. Stampfl, Thermal debinding of ceramic filled photopolymers, Mat. Sci. Forum. 825-826 (2015) 75-81

DOI: 10.4028/www.scientific.net/MSF.825-826.75

Google Scholar

[5] R.Z. LeGeros, Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mat. 14(1) (1993) 65-88

DOI: 10.1016/0267-6605(93)90049-D

Google Scholar

[6] A. Bandyopadhyay, S. Bernard, W. Xue, S. Bose, Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 Dopants, J. Am. Ceram. Soc. 89 (2006) 2675-2688

DOI: 10.1111/j.1551-2916.2006.01207.x

Google Scholar

[7] A. Bandyopadhyay, J. Petersen, G. Fielding, S. Banerjee, S. Bose, ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions. J. Biomed. Mater. Res. B Appl. Biomater. 100 (2012) 2203-2212

DOI: 10.1002/jbm.b.32789

Google Scholar

[8] S. Bose, S. Tarafder, S.S. Banerjee, N.M. Davies, A. Bandyopadhyay, Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped beta-TCP, Bone. 48 (2011) 1282-1290

DOI: 10.1016/j.bone.2011.03.685

Google Scholar

[9] G. Mestres, C. Le Van C, M.P. Ginebra, Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response. Acta Biomater. 8 (2012) 1169-1179

DOI: 10.1016/j.actbio.2011.11.021

Google Scholar

[10] D. Ke, S. Tarafder, S. Vahabzadeh, S. Bose, Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro genes expression and in vivo, Mater Sci Eng C Mater Biol Appl. (2019) 96 10-19․

DOI: 10.1016/j.msec.2018.10.073

Google Scholar

[11] J. Eisinger, D. Clairet, Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study, Magnes Res. 6 (1993) 247-249.

Google Scholar

[12] R. de Melo Bernardino, C. Wirth, S.L. Stares, G.V. Salmoria, D. Hotza, J. Günster, Manufacturing of SiO2-coated b-TCP structures by 3D printing using a preceramic polymer as printing binder and silica source, J. Cer. Sc. Tech. 9(1) (2018) 37-42

Google Scholar

[13] W. Haidong, Ch. Yanling, W. Liu, H. Rongxuan, Z. Maopeng, W. Shanghua, X. Song, Y. Chen, Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography, Curr. Op. Sol. St. Mat. Sc. 21(9) (2017) 323-347

DOI: 10.1016/j.ceramint.2016.08.024

Google Scholar

[14] Information on: https://formlabs-media.formlabs.com/datasheets/2001037-SDS-ENCA-0.pdf

Google Scholar

[15] V. Truxova, J. Safka, M. Seidel, I. Kovalenko, L. Volesky, M. Ackermann, Ceramic 3D printing. Comparison of SLA and DLP technologies, MM Sci. J. (2020) 3908-3911

DOI: 10.17973/MMSJ.2020_06_2020006

Google Scholar

[16] Information on: https://media.formlabs.com/m/012f4949683b3fc2/original/-ENUS-Ceramic-Resin-Usage-Design-Guide.pdf

Google Scholar

[17] ISO 23242:2020(en). Information on: https://www.iso.org/obp/ui#iso:std:iso:23242:ed-1:v1:en

Google Scholar

[18] F. Gervaso, S.K. Padmanabhan, F. Scalera, A. Sannino, A. Licciulli, Mechanical stability of highly porous hydroxyapatite scaffolds during different stages of in vitro studies, Mat. Lett. 185 (2016) 239-242

DOI: 10.1016/j.matlet.2016.08.139

Google Scholar

[19] D. dos S.Tavares, L. de O. Castro, G.D. de A. Soares, G.G. Alves, J.M. Granjeiro. Synthesis and cytotoxicity evaluation of granular magnesium substituted b-tricalcium phosphate, J. Appl. Oral Sci. 21(1) (2013) 37-42

DOI: 10.1590/1678-7757201302138

Google Scholar

[20] M.J. Buerger, The role of temperature in mineralogy, Am. Mineral. 33 (1948) 101-121.

Google Scholar

[21] M.J. Buerger, Crystallographic aspects of phase transformations, Am. Mineral. (1951) 183-211.

Google Scholar

[22] R.G. Carrodeguas. A.H. De Aza. X. Turrillas, P. Pena, S. De Azaw, New approach to the β-α polymorphic transformation in magnesium-substituted tricalcium phosphate and its practical implications, J. Am. Ceram. Soc. 91 (2008) 1281-1286

DOI: 10.1111/j.1551-2916.2008.02294.x

Google Scholar