[1]
U.B. Demirci, P. Miele, Solid-state hydrogen storage, 2011
DOI: 10.1533/9781845694944
Google Scholar
[2]
S.A. Sherif, D.Y. Goswami, E.K. Stefanakos, A. Steinfeld, Handbook of hydrogen energy, 2014
DOI: 10.1201/b17226
Google Scholar
[3]
S.S. Srinivasan, D.E. Demirocak, Metal hydrides used for hydrogen storage, in: Nanostructured Mater. Next-Generation Energy Storage Convers. Hydrog. Prod. Storage, Util., Springer Berlin Heidelberg. 2017, pp.225-255
DOI: 10.1007/978-3-662-53514-1_8
Google Scholar
[4]
J. Huot, Nanocrystalline metal hydrides obtained by severe plastic deformations, Metals. 2 (2012) 22-40
DOI: 10.3390/met2010022
Google Scholar
[5]
J. Huot, N.Y. Skryabina, D. Fruchart, Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties, Metals (Basel). 2 (2012) 329-343
DOI: 10.3390/met2030329
Google Scholar
[6]
M. Zehetbauer, R. Grössinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, R. Würschum, Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12 (2010) 692-700
DOI: 10.1002/adem.201000119
Google Scholar
[7]
T. Hongo, K. Edalati, M. Arita, J. Matsuda, E. Akiba, Z. Horita, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion, Acta Mater. 92 (2015) 46-54
DOI: 10.1016/j.actamat.2015.03.036
Google Scholar
[8]
A. Jung, S. Diebels, E. Lach, Improved Mechanical Properties by Nanostructuring-Specific Considerations under Dynamic Load Conditions, in: Handb. Mech. Nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp.181-209
DOI: 10.1002/9783527674947.ch9
Google Scholar
[9]
R. Kocich, P. Lukáč, SPD Processes - Methods for Mechanical Nanostructuring, in: Handb. Mech. Nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp.235-262
DOI: 10.1002/9783527674947.ch11
Google Scholar
[10]
F. Hadef, A. Otmani, Mechanical Alloying/Milling, in: Handb. Mech. Nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp.263-276
DOI: 10.1002/9783527674947.ch12
Google Scholar
[11]
L. Kommel, P. Põdra, V. Mikli, B. Omranpour, Gradient microstructure in tantalum formed under the wear track during dry sliding friction, Wear. 466-467 (2021) 203573
DOI: 10.1016/j.wear.2020.203573
Google Scholar
[12]
B.O. Shahreza, J. Huot, M. Antonov, L. Kommel, F. Sergejev, F.J.P. Trujillo, A. Heczel, J. Gubicza, The effect of microstructure evolution on the wear behavior of tantalum processed by Indirect Extrusion Angular Pressing, Int. J. Refract. Met. Hard Mater. 111 (2023) 106079
DOI: 10.1016/j.ijrmhm.2022.106079
Google Scholar
[13]
L. Kommel, J. Huot, B.O. Shahreza, Effect of Hard Cyclic Viscoplastic Deformation on the Microstructure , Mechanical Properties , and Electrical Conductivity of Cu-Cr Alloy, J. Mater. Eng. Perform. 31 (2022) 9690-9702
DOI: 10.1007/s11665-022-06997-w
Google Scholar
[14]
B. Omranpour, L. Kommel, F. Sergejev, J. Ivanisenko, M. Antonov, M.A.L. Hernandez-Rodriguez, E. Garcia-Sanchez, Tailoring the microstructure and tribological properties in commercially pure aluminium processed by High Pressure Torsion Extrusion, Proc. Est. Acad. Sci. 70 (2021) 540
DOI: 10.3176/proc.2021.4.23
Google Scholar
[15]
B. Omranpour, Y. Ivanisenko, R. Kulagin, L. Kommel, E. Garcia Sanchez, D. Nugmanov, T. Scherer, A. Heczel, J. Gubicza, Evolution of microstructure and hardness in aluminum processed by High Pressure Torsion Extrusion, Mater. Sci. Eng. A. 762 (2019) 1-10
DOI: 10.1016/j.msea.2019.138074
Google Scholar
[16]
M. Motallebi Savarabadi, G. Faraji, M. Eftekhari, Microstructure and Mechanical Properties of the Commercially Pure Copper Tube After Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE), Met. Mater. Int. 27 (2021) 1686-1700
DOI: 10.1007/s12540-019-00525-7
Google Scholar
[17]
D. Nugmanov, R. Kulagin, O. Perroud, M. Mail, H. Hahn, Y. Ivanisenko, Equivalent strain distribution at high pressure torsion extrusion of pure copper: Finite element modeling and experimental validation, J. Mater. Process. Tech. 315 (2023) 117932
DOI: 10.1016/j.jmatprotec.2023.117932
Google Scholar
[18]
B. Omranpour, L. Kommel, E. Garcia Sanchez, J. Ivanisenko, J. Huot, Enhancement of hydrogen storage in metals by using a new technique in severe plastic deformations, in: Key Eng. Mater., Trans Tech Publications. 799 (2019) 173-178
DOI: 10.4028/www.scientific.net/KEM.799.173
Google Scholar
[19]
Y. Ivanisenko, Perspectives of Scaling up of Severe Plastic Deformation: A Case of High Pressure Torsion Extrusion, 64 (2023) 1489-1596
DOI: 10.2320/matertrans.MT-MF2022057
Google Scholar
[20]
B. Omranpour, R. Kulagin, Y. Ivanisenko, E. Garcia Sanchez, Experimental and numerical analysis of HPTE on mechanical properties of materials and strain distribution, in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing. (2017) 012047
DOI: 10.1088/1757-899X/194/1/012047
Google Scholar
[21]
Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, H. Hahn, High Pressure Torsion Extrusion as a new severe plastic deformation process, Mater. Sci. Eng. A. 664 (2016) 247-256
DOI: 10.1016/j.msea.2016.04.008
Google Scholar
[22]
T. Voskuilen, Y. Zheng, T. Pourpoint, Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials, Int. J. Hydrogen Energy. 35 (2010) 10387-10395
DOI: 10.1016/J.IJHYDENE.2010.07.169
Google Scholar
[23]
J. Luis Carrillo-Bucio, J.R. Tena-Garcia, E.P. Armenta-Garcia, O. Hernandez-Silva, G. Cabañas-Moreno, K. Suárez-Alcántara, Low-cost Sieverts-type apparatus for the study of hydriding/dehydriding reactions, HardwareX. 4 (2018) 1-14
DOI: 10.1016/j.ohx.2018.e00036
Google Scholar
[24]
A.B. Sankuru, M. Hariram, K. Gudimetla, B. Ravisankar, S.P. Kumaresh Babu, Optimization of processing temperature and back pressure of equal channel angular pressing for achieving crack-free fine grained magnesium, Mater. Today Proc. 47 (2021) 4611-4616
DOI: 10.1016/J.MATPR.2021.05.463
Google Scholar
[25]
F. Akbaripanah, M. Sabbaghian, N. Fakhar, P. Minárik, J. Veselý, P.T. Hung, G. Kapoor, O. Renk, K. Máthis, J. Gubicza, J. Eckert, Influence of high pressure torsion on microstructure evolution and mechanical properties of AZ80/SiC magnesium matrix composites, Mater. Sci. Eng. A. 826 (2021) 141916
DOI: 10.1016/J.MSEA.2021.141916
Google Scholar
[26]
M. Samadi Khoshkhoo, S. Scudino, J. Thomas, K.B. Surreddi, J. Eckert, Grain and crystallite size evaluation of cryomilled pure copper, J. Alloys Compd. 509 (2011) 343-347
DOI: 10.1016/j.jallcom.2011.02.066
Google Scholar
[27]
K. Edalati, E. Akiba, W.J. Botta, Y. Estrin, R. Floriano, D. Fruchart, T. Grosdidier, Z. Horita, J. Huot, H.W. Li, H.J. Lin, Á. Révész, M.J. Zehetbauer, Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys, J. Mater. Sci. Technol. 146 (2023) 221-239
DOI: 10.1016/J.JMST.2022.10.068
Google Scholar
[28]
F.D. Manchester, ASM International., Phase diagrams of binary hydrogen alloys, ASM International, 2000.
Google Scholar
[29]
K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scr. Mater. 64 (2011) 880-883
DOI: 10.1016/J.SCRIPTAMAT.2011.01.023
Google Scholar
[30]
Z. Wang, Z. Tian, P. Yao, H. Zhao, C. Xia, T. Yang, Improved hydrogen storage kinetic properties of magnesium-based materials by adding Ni 2 P, Renewable Energy. 189 (2022) 559-569
DOI: 10.1016/j.renene.2022.03.001
Google Scholar
[31]
H. Mirzadeh, Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review, J. Mater. Res. Technol. 25 (2023) 7050-7077.
DOI: 10.1016/J.JMRT.2023.07.150
Google Scholar