A Promising Approach to Solid-State Hydrogen Storage: Mechanical Nanostructuring Synthesis of Magnesium by High Pressure Torsion Extrusion

Article Preview

Abstract:

This article presents an investigation into the impact of High Pressure Torsion Extrusion (HPTE) on the microstructural features, hardness and hydrogen storage, focusing on pure magnesium. HPTE is a modern mechanical nanostructuring technique that can refine the microstructural properties and subsequently affects the mechanical and functional properties of the materials. Two HPTE regimes were used in this study: (1) Direct Extrusion without rotation (DE), and (2) an extrusion speed of 6 mm/min along with a rotational speed of 1.8 rpm (v6w1.8). One sample in as-received conditions was also tested as a reference. Results showed increased hardness in the material after HPTE processing, with the DE sample reaching 60 HRB and the v6w1.8 sample exhibiting a gradient distribution of hardness from 71 to 83 HRB. X-ray diffraction analysis revealed significant microstructural refinement in the v6w1.8 sample. Results of hydrogenation kinetics showed that the DE sample absorbed up to 1.2 wt.% of hydrogen, while the v6w1.8 sample displayed 7.2 wt.% of hydrogen absorption, approaching the theoretical hydrogen storage capacity for magnesium (7.6 wt.%). These findings highlight the positive effects of HPTE on microstructural refinement and hydrogen storage, showcasing its potential for advancements in materials science and hydrogen-based energy technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-51

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.B. Demirci, P. Miele, Solid-state hydrogen storage, 2011

DOI: 10.1533/9781845694944

Google Scholar

[2] S.A. Sherif, D.Y. Goswami, E.K. Stefanakos, A. Steinfeld, Handbook of hydrogen energy, 2014

DOI: 10.1201/b17226

Google Scholar

[3] S.S. Srinivasan, D.E. Demirocak, Metal hydrides used for hydrogen storage, in: Nanostructured Mater. Next-Generation Energy Storage Convers. Hydrog. Prod. Storage, Util., Springer Berlin Heidelberg. 2017, pp.225-255

DOI: 10.1007/978-3-662-53514-1_8

Google Scholar

[4] J. Huot, Nanocrystalline metal hydrides obtained by severe plastic deformations, Metals. 2 (2012) 22-40

DOI: 10.3390/met2010022

Google Scholar

[5] J. Huot, N.Y. Skryabina, D. Fruchart, Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties, Metals (Basel). 2 (2012) 329-343

DOI: 10.3390/met2030329

Google Scholar

[6] M. Zehetbauer, R. Grössinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, R. Würschum, Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12 (2010) 692-700

DOI: 10.1002/adem.201000119

Google Scholar

[7] T. Hongo, K. Edalati, M. Arita, J. Matsuda, E. Akiba, Z. Horita, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion, Acta Mater. 92 (2015) 46-54

DOI: 10.1016/j.actamat.2015.03.036

Google Scholar

[8] A. Jung, S. Diebels, E. Lach, Improved Mechanical Properties by Nanostructuring-Specific Considerations under Dynamic Load Conditions, in: Handb. Mech. Nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp.181-209

DOI: 10.1002/9783527674947.ch9

Google Scholar

[9] R. Kocich, P. Lukáč, SPD Processes - Methods for Mechanical Nanostructuring, in: Handb. Mech. Nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp.235-262

DOI: 10.1002/9783527674947.ch11

Google Scholar

[10] F. Hadef, A. Otmani, Mechanical Alloying/Milling, in: Handb. Mech. Nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp.263-276

DOI: 10.1002/9783527674947.ch12

Google Scholar

[11] L. Kommel, P. Põdra, V. Mikli, B. Omranpour, Gradient microstructure in tantalum formed under the wear track during dry sliding friction, Wear. 466-467 (2021) 203573

DOI: 10.1016/j.wear.2020.203573

Google Scholar

[12] B.O. Shahreza, J. Huot, M. Antonov, L. Kommel, F. Sergejev, F.J.P. Trujillo, A. Heczel, J. Gubicza, The effect of microstructure evolution on the wear behavior of tantalum processed by Indirect Extrusion Angular Pressing, Int. J. Refract. Met. Hard Mater. 111 (2023) 106079

DOI: 10.1016/j.ijrmhm.2022.106079

Google Scholar

[13] L. Kommel, J. Huot, B.O. Shahreza, Effect of Hard Cyclic Viscoplastic Deformation on the Microstructure , Mechanical Properties , and Electrical Conductivity of Cu-Cr Alloy, J. Mater. Eng. Perform. 31 (2022) 9690-9702

DOI: 10.1007/s11665-022-06997-w

Google Scholar

[14] B. Omranpour, L. Kommel, F. Sergejev, J. Ivanisenko, M. Antonov, M.A.L. Hernandez-Rodriguez, E. Garcia-Sanchez, Tailoring the microstructure and tribological properties in commercially pure aluminium processed by High Pressure Torsion Extrusion, Proc. Est. Acad. Sci. 70 (2021) 540

DOI: 10.3176/proc.2021.4.23

Google Scholar

[15] B. Omranpour, Y. Ivanisenko, R. Kulagin, L. Kommel, E. Garcia Sanchez, D. Nugmanov, T. Scherer, A. Heczel, J. Gubicza, Evolution of microstructure and hardness in aluminum processed by High Pressure Torsion Extrusion, Mater. Sci. Eng. A. 762 (2019) 1-10

DOI: 10.1016/j.msea.2019.138074

Google Scholar

[16] M. Motallebi Savarabadi, G. Faraji, M. Eftekhari, Microstructure and Mechanical Properties of the Commercially Pure Copper Tube After Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE), Met. Mater. Int. 27 (2021) 1686-1700

DOI: 10.1007/s12540-019-00525-7

Google Scholar

[17] D. Nugmanov, R. Kulagin, O. Perroud, M. Mail, H. Hahn, Y. Ivanisenko, Equivalent strain distribution at high pressure torsion extrusion of pure copper: Finite element modeling and experimental validation, J. Mater. Process. Tech. 315 (2023) 117932

DOI: 10.1016/j.jmatprotec.2023.117932

Google Scholar

[18] B. Omranpour, L. Kommel, E. Garcia Sanchez, J. Ivanisenko, J. Huot, Enhancement of hydrogen storage in metals by using a new technique in severe plastic deformations, in: Key Eng. Mater., Trans Tech Publications. 799 (2019) 173-178

DOI: 10.4028/www.scientific.net/KEM.799.173

Google Scholar

[19] Y. Ivanisenko, Perspectives of Scaling up of Severe Plastic Deformation: A Case of High Pressure Torsion Extrusion, 64 (2023) 1489-1596

DOI: 10.2320/matertrans.MT-MF2022057

Google Scholar

[20] B. Omranpour, R. Kulagin, Y. Ivanisenko, E. Garcia Sanchez, Experimental and numerical analysis of HPTE on mechanical properties of materials and strain distribution, in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing. (2017) 012047

DOI: 10.1088/1757-899X/194/1/012047

Google Scholar

[21] Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, H. Hahn, High Pressure Torsion Extrusion as a new severe plastic deformation process, Mater. Sci. Eng. A. 664 (2016) 247-256

DOI: 10.1016/j.msea.2016.04.008

Google Scholar

[22] T. Voskuilen, Y. Zheng, T. Pourpoint, Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials, Int. J. Hydrogen Energy. 35 (2010) 10387-10395

DOI: 10.1016/J.IJHYDENE.2010.07.169

Google Scholar

[23] J. Luis Carrillo-Bucio, J.R. Tena-Garcia, E.P. Armenta-Garcia, O. Hernandez-Silva, G. Cabañas-Moreno, K. Suárez-Alcántara, Low-cost Sieverts-type apparatus for the study of hydriding/dehydriding reactions, HardwareX. 4 (2018) 1-14

DOI: 10.1016/j.ohx.2018.e00036

Google Scholar

[24] A.B. Sankuru, M. Hariram, K. Gudimetla, B. Ravisankar, S.P. Kumaresh Babu, Optimization of processing temperature and back pressure of equal channel angular pressing for achieving crack-free fine grained magnesium, Mater. Today Proc. 47 (2021) 4611-4616

DOI: 10.1016/J.MATPR.2021.05.463

Google Scholar

[25] F. Akbaripanah, M. Sabbaghian, N. Fakhar, P. Minárik, J. Veselý, P.T. Hung, G. Kapoor, O. Renk, K. Máthis, J. Gubicza, J. Eckert, Influence of high pressure torsion on microstructure evolution and mechanical properties of AZ80/SiC magnesium matrix composites, Mater. Sci. Eng. A. 826 (2021) 141916

DOI: 10.1016/J.MSEA.2021.141916

Google Scholar

[26] M. Samadi Khoshkhoo, S. Scudino, J. Thomas, K.B. Surreddi, J. Eckert, Grain and crystallite size evaluation of cryomilled pure copper, J. Alloys Compd. 509 (2011) 343-347

DOI: 10.1016/j.jallcom.2011.02.066

Google Scholar

[27] K. Edalati, E. Akiba, W.J. Botta, Y. Estrin, R. Floriano, D. Fruchart, T. Grosdidier, Z. Horita, J. Huot, H.W. Li, H.J. Lin, Á. Révész, M.J. Zehetbauer, Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys, J. Mater. Sci. Technol. 146 (2023) 221-239

DOI: 10.1016/J.JMST.2022.10.068

Google Scholar

[28] F.D. Manchester, ASM International., Phase diagrams of binary hydrogen alloys, ASM International, 2000.

Google Scholar

[29] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scr. Mater. 64 (2011) 880-883

DOI: 10.1016/J.SCRIPTAMAT.2011.01.023

Google Scholar

[30] Z. Wang, Z. Tian, P. Yao, H. Zhao, C. Xia, T. Yang, Improved hydrogen storage kinetic properties of magnesium-based materials by adding Ni 2 P, Renewable Energy. 189 (2022) 559-569

DOI: 10.1016/j.renene.2022.03.001

Google Scholar

[31] H. Mirzadeh, Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review, J. Mater. Res. Technol. 25 (2023) 7050-7077.

DOI: 10.1016/J.JMRT.2023.07.150

Google Scholar