A Computational Model of Custom 3D Printed Hand Orthosis

Article Preview

Abstract:

3D printed patient-specific hand orthoses can improve the efficiency of the treatment and the comfort of the patient, but since each customized orthosis is a virtually unique device, it is difficult to assess their mechanical response in the design phase, both experimentally and numerically. The Finite Element Method (FEM) could be used to predict the deformation of the orthosis under predetermined loads, but patient-specific models including interaction with the hand are still lacking. In the present work we present a computational model in which, starting from the scan data of the hand used to manufacture the orthosis, a FEM model of the hand is generated, including a skeletal structure. Hand bones positions and dimensions can be defined basing on simple anatomical measurements or literature data and the stiffness of the joints can be tuned in relation to patient pathology. The remaining hand volume consists of a soft tissue region, mimicking the non-linear mechanical behaviour of skin and muscles. Results show that both functional and structural indexes can be analyzed, such as contact pressures, stress state or the compliance of the orthosis, providing useful information for the design of custom devices. By using mesh deformation algorithms, the scan data could be used to generate different orthosis designs in target positions defined by the therapist and, taking advantage of a parametric model under development, the skeletal structure could be adapted correspondingly, providing an innovative pathway to investigate the response of the orthosis during the whole rehabilitation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-162

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.F.M. Duncan, C.E. Saracevic, R. Kakinoki, Biomechanics of the hand, Hand Clin. 29 (2013) 483–92.

DOI: 10.1016/j.hcl.2013.08.003

Google Scholar

[2] C.T. Wadsworth, Clinical Anatomy and Mechanics of the Wrist and Hand, J. Orthop. Sport Phys. Ther. 4 (1983) 206–16.

Google Scholar

[3] N. Carità Cambon, O. Pasche, L. Wehrli, The hand: review of the main pathologies for the primary care physician, Rev. Med. Suisse 12 (2016) 1625–33.

Google Scholar

[4] A. Thibaut, C. Chatelle, E. Ziegler, M-A. Bruno, S. Laureys, O. Gosseries, Spasticity after stroke: Physiology, assessment and treatment, Brain Inj. 27 (2013) 1093–105.

DOI: 10.3109/02699052.2013.804202

Google Scholar

[5] J. Paysant, A. Foisneau-Lottin, C. Gable, C. Gavillot-Boulangé, J-M. Galas, M. Hullar, et al. Ortesi della mano, EMC – Med. Riabil. 14 (2007) 1–15.

DOI: 10.1016/s1283-078x(07)70234-1

Google Scholar

[6] G. Baronio, S. Harran, A. Signoroni, A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process, Appl. Bionics Biomech. (2016);2016.

DOI: 10.1155/2016/8347478

Google Scholar

[7] D. Palousek, J. Rosicky, D. Koutny, P. Stoklásek, T. Narat, Pilot study of the wrist orthosis design process, Rapid Prototyp.J. 20 (2014) 27–32.

DOI: 10.1108/rpj-03-2012-0027

Google Scholar

[8] A.M. Paterson, R. Bibb, R.I. Campbell, G. Bingham, Comparing additive manufacturing technologies for customised wrist splints, Rapid Prototyp. J. 21 (2015) 230–43.

DOI: 10.1108/rpj-10-2013-0099

Google Scholar

[9] J. Wu, C. Zhao, Y. Liu, S. Ma, Mechanical Analysis of a Customized Hand Orthosis Based on 3D Printing, Lect. Notes Electr. Eng. 451 (2018) 501–8.

DOI: 10.1007/978-981-10-5768-7_53

Google Scholar

[10] H.J. Yoo, S. Lee, J. Kim, C. Park, B. Lee, Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury, J Neuroeng. Rehabil. 16 (2019) 1–14.

DOI: 10.1186/s12984-019-0633-6

Google Scholar

[11] L. Toth, A. Schiffer, M. Nyitrai, A. Pentek, R. Told, P. Maroti, Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies, Mater. Des. 195 (2020) 109029.

DOI: 10.1016/j.matdes.2020.109029

Google Scholar

[12] F.Górski, R. Wichniarek, W. Kuczko, M. Zukowska, M. Lulkiewicz, P. Zawadzki, Experimental studies on 3D printing of automatically, designed customized wrist-hand orthoses, Materials (Basel) 13(18) (2020) 4091.

DOI: 10.3390/ma13184091

Google Scholar

[13] R.M. Duncan, Basic principles of splinting the hand, Phys. Ther. 69 (1989) 1104–16.

Google Scholar

[14] X. Tan, L. He, J. Cao, W. Chen, T. Nanayakkara, A Soft Pressure Sensor Skin for Hand and Wrist Orthoses, IEEE Robot. Autom. Lett. 5 (2020) 2192–9.

DOI: 10.1109/lra.2020.2970947

Google Scholar

[15] M.A. Marques, E. Mendes, N.V. Ramos, V.C. Pinto, M.A. Vaz, Finite element analysis of ankle foot orthosis to predict fracture conditions during gait Finite-element analysis of ankle-foot orthosis to predict fracture conditions during gait, 1st ICH Gaia-Porto, 2010.

DOI: 10.1016/s0021-9290(12)70513-4

Google Scholar

[16] A.Cazon, S. Kelly, A.M. Paterson, R.J. Bibb, R.I. Campbell, Analysis and comparison of wrist splint designs using the finite element method: Multi-material three-dimensional printing compared to typical existing practice with thermoplastics, Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 231 (2017) 881–97.

DOI: 10.1177/0954411917718221

Google Scholar

[17] J. Li, H. Tanaka, Rapid customization system for 3D-printed splint using programmable modeling technique – a practical approach, 3D Print. Med. 4 (2018) 5.

DOI: 10.1186/s41205-018-0027-6

Google Scholar

[18] K.Łukaszewski, R. Wichniarek, F. Górski, Determination of the elasticity modulus of additively manufactured wrist hand orthoses, Materials (Basel) 13 (2020) 1–18.

DOI: 10.3390/ma13194379

Google Scholar

[19] D. Chamoret, M. Bodo, S. Roth, A first step in finite-element simulation of a grasping task, Comput. Assist. Surg. 21 (2016) 22–9.

DOI: 10.1080/24699322.2016.1240294

Google Scholar

[20] J.Z. Wu, R.G. Dong, Analysis of the contact interactions between fingertips and objects with different surface curvatures, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 219 (2005) 89–103.

DOI: 10.1243/095441105x9327

Google Scholar

[21] J.Z. Wu, R.G. Dong, S. Rakheja, A.W. Schopper, Simulation of mechanical responses of fingertip to dynamic loading, Med. Eng. Phys. 24 (2002) 253–64.

DOI: 10.1016/s1350-4533(02)00018-8

Google Scholar

[22] Y. Xie, S. Kanai, H. Date, Simulation of contact deformation property of Digital Hand skin and its experimental verifications, Key Eng. Mater. 523-524 (2012) 339–44.

DOI: 10.4028/www.scientific.net/kem.523-524.339

Google Scholar

[23] G. Harih, M. Tada, Grasping simulations using finite element digital human hand model, vol. 822, Springer International Publishing, 2019.

Google Scholar

[24] A. Avanzini, D. Battini, Integrated Experimental and Numerical Comparison of Different Approaches for Planar Biaxial Testing of a Hyperelastic Material, Adv. Mater. Sci. Eng. 2016 (2016) 6014129.

DOI: 10.1155/2016/6014129

Google Scholar

[25] G. Baronio, P. Volonghi, A. Signoroni, Concept and design of a 3D printed support to assist hand scanning for the realization of customized orthosis, Appl. Bionics. Biomech. 2017 (2017) 8171520.

DOI: 10.1155/2017/8171520

Google Scholar

[26] P.Volonghi, G. Baronio, A. Signoroni, 3D scanning and geometry processing techniques for customised hand orthotics: an experimental assessment, Virtual Phys. Prototyp. 13 (2018) 105–16.

DOI: 10.1080/17452759.2018.1426328

Google Scholar

[27] A. Buryanov, V. Kotiuk, Proportions of Hand Segments, Int. J. Morphol. 28 (2010) 755–8.

DOI: 10.4067/s0717-95022010000300015

Google Scholar

[28] D. Hoang, C.L. Vu, M. Jackson, J.L. Huang, An Anatomical Study of Metacarpal Morphology Utilizing CT Scans: Evaluating Parameters for Antegrade Intramedullary Compression Screw Fixation of Metacarpal Fractures, J. Hand Surg. Am. 46 (2021) 149.e1-149.e8.

DOI: 10.1016/j.jhsa.2020.08.007

Google Scholar

[29] S.Panchal-Kildare, K. Malone, Skeletal anatomy of the hand, Hand Clin. 29 (2013) 459–71.

DOI: 10.1016/j.hcl.2013.08.001

Google Scholar

[30] T. Bjar, M.S. Alphin, Finite element analysis to assess the biomechanical behavior of a finger model gripping handles with different diameters, Biomed. Hum. Kinet. 11 (2019) 69–79.

DOI: 10.2478/bhk-2019-0009

Google Scholar

[31] A.Yu, K.L. Yick, S.P. Ng, J. Yip, Y.F. Chan, Numerical simulation of pressure therapy glove by using Finite Element Method, Burns 42 (2016) 141–51.

DOI: 10.1016/j.burns.2015.09.013

Google Scholar

[32] Y.Wei, Z. Zou, G. Wei, L. Ren, Z. Qian, Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation, Ann. Biomed. Eng. 48 (2020) 1181–95.

DOI: 10.1007/s10439-019-02439-2

Google Scholar

[33] J.L. Sancho-Bru, M.C. Mora, B.E. León, A. Pérez-González, J.L. Iserte, A. Morales, Grasp modelling with a biomechanical model of the hand, Comput. Methods Biomech. Biomed. Engin. 187 (2014) 297–310.

DOI: 10.1080/10255842.2012.682156

Google Scholar

[34] M. Nakatani, T. Kawasoe, K. Shiojima, K. Koketsu, S. Kinoshita, J. Wada, Wearable contact force sensor system based on fingerpad deformation, IEEE World Haptics Conf WHC 2011 (2011), 323–8.

DOI: 10.1109/whc.2011.5945506

Google Scholar

[35] A. Morsucci A., M. Centin, A. Signoroni, Fast centroidal deformation for large mesh models Fast centroidal deformation for large mesh models, Proc. of Smart Tools and Applications in Graphics (STAG), 2018.

Google Scholar