[1]
S.F.M. Duncan, C.E. Saracevic, R. Kakinoki, Biomechanics of the hand, Hand Clin. 29 (2013) 483–92.
DOI: 10.1016/j.hcl.2013.08.003
Google Scholar
[2]
C.T. Wadsworth, Clinical Anatomy and Mechanics of the Wrist and Hand, J. Orthop. Sport Phys. Ther. 4 (1983) 206–16.
Google Scholar
[3]
N. Carità Cambon, O. Pasche, L. Wehrli, The hand: review of the main pathologies for the primary care physician, Rev. Med. Suisse 12 (2016) 1625–33.
Google Scholar
[4]
A. Thibaut, C. Chatelle, E. Ziegler, M-A. Bruno, S. Laureys, O. Gosseries, Spasticity after stroke: Physiology, assessment and treatment, Brain Inj. 27 (2013) 1093–105.
DOI: 10.3109/02699052.2013.804202
Google Scholar
[5]
J. Paysant, A. Foisneau-Lottin, C. Gable, C. Gavillot-Boulangé, J-M. Galas, M. Hullar, et al. Ortesi della mano, EMC – Med. Riabil. 14 (2007) 1–15.
DOI: 10.1016/s1283-078x(07)70234-1
Google Scholar
[6]
G. Baronio, S. Harran, A. Signoroni, A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process, Appl. Bionics Biomech. (2016);2016.
DOI: 10.1155/2016/8347478
Google Scholar
[7]
D. Palousek, J. Rosicky, D. Koutny, P. Stoklásek, T. Narat, Pilot study of the wrist orthosis design process, Rapid Prototyp.J. 20 (2014) 27–32.
DOI: 10.1108/rpj-03-2012-0027
Google Scholar
[8]
A.M. Paterson, R. Bibb, R.I. Campbell, G. Bingham, Comparing additive manufacturing technologies for customised wrist splints, Rapid Prototyp. J. 21 (2015) 230–43.
DOI: 10.1108/rpj-10-2013-0099
Google Scholar
[9]
J. Wu, C. Zhao, Y. Liu, S. Ma, Mechanical Analysis of a Customized Hand Orthosis Based on 3D Printing, Lect. Notes Electr. Eng. 451 (2018) 501–8.
DOI: 10.1007/978-981-10-5768-7_53
Google Scholar
[10]
H.J. Yoo, S. Lee, J. Kim, C. Park, B. Lee, Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury, J Neuroeng. Rehabil. 16 (2019) 1–14.
DOI: 10.1186/s12984-019-0633-6
Google Scholar
[11]
L. Toth, A. Schiffer, M. Nyitrai, A. Pentek, R. Told, P. Maroti, Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies, Mater. Des. 195 (2020) 109029.
DOI: 10.1016/j.matdes.2020.109029
Google Scholar
[12]
F.Górski, R. Wichniarek, W. Kuczko, M. Zukowska, M. Lulkiewicz, P. Zawadzki, Experimental studies on 3D printing of automatically, designed customized wrist-hand orthoses, Materials (Basel) 13(18) (2020) 4091.
DOI: 10.3390/ma13184091
Google Scholar
[13]
R.M. Duncan, Basic principles of splinting the hand, Phys. Ther. 69 (1989) 1104–16.
Google Scholar
[14]
X. Tan, L. He, J. Cao, W. Chen, T. Nanayakkara, A Soft Pressure Sensor Skin for Hand and Wrist Orthoses, IEEE Robot. Autom. Lett. 5 (2020) 2192–9.
DOI: 10.1109/lra.2020.2970947
Google Scholar
[15]
M.A. Marques, E. Mendes, N.V. Ramos, V.C. Pinto, M.A. Vaz, Finite element analysis of ankle foot orthosis to predict fracture conditions during gait Finite-element analysis of ankle-foot orthosis to predict fracture conditions during gait, 1st ICH Gaia-Porto, 2010.
DOI: 10.1016/s0021-9290(12)70513-4
Google Scholar
[16]
A.Cazon, S. Kelly, A.M. Paterson, R.J. Bibb, R.I. Campbell, Analysis and comparison of wrist splint designs using the finite element method: Multi-material three-dimensional printing compared to typical existing practice with thermoplastics, Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 231 (2017) 881–97.
DOI: 10.1177/0954411917718221
Google Scholar
[17]
J. Li, H. Tanaka, Rapid customization system for 3D-printed splint using programmable modeling technique – a practical approach, 3D Print. Med. 4 (2018) 5.
DOI: 10.1186/s41205-018-0027-6
Google Scholar
[18]
K.Łukaszewski, R. Wichniarek, F. Górski, Determination of the elasticity modulus of additively manufactured wrist hand orthoses, Materials (Basel) 13 (2020) 1–18.
DOI: 10.3390/ma13194379
Google Scholar
[19]
D. Chamoret, M. Bodo, S. Roth, A first step in finite-element simulation of a grasping task, Comput. Assist. Surg. 21 (2016) 22–9.
DOI: 10.1080/24699322.2016.1240294
Google Scholar
[20]
J.Z. Wu, R.G. Dong, Analysis of the contact interactions between fingertips and objects with different surface curvatures, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 219 (2005) 89–103.
DOI: 10.1243/095441105x9327
Google Scholar
[21]
J.Z. Wu, R.G. Dong, S. Rakheja, A.W. Schopper, Simulation of mechanical responses of fingertip to dynamic loading, Med. Eng. Phys. 24 (2002) 253–64.
DOI: 10.1016/s1350-4533(02)00018-8
Google Scholar
[22]
Y. Xie, S. Kanai, H. Date, Simulation of contact deformation property of Digital Hand skin and its experimental verifications, Key Eng. Mater. 523-524 (2012) 339–44.
DOI: 10.4028/www.scientific.net/kem.523-524.339
Google Scholar
[23]
G. Harih, M. Tada, Grasping simulations using finite element digital human hand model, vol. 822, Springer International Publishing, 2019.
Google Scholar
[24]
A. Avanzini, D. Battini, Integrated Experimental and Numerical Comparison of Different Approaches for Planar Biaxial Testing of a Hyperelastic Material, Adv. Mater. Sci. Eng. 2016 (2016) 6014129.
DOI: 10.1155/2016/6014129
Google Scholar
[25]
G. Baronio, P. Volonghi, A. Signoroni, Concept and design of a 3D printed support to assist hand scanning for the realization of customized orthosis, Appl. Bionics. Biomech. 2017 (2017) 8171520.
DOI: 10.1155/2017/8171520
Google Scholar
[26]
P.Volonghi, G. Baronio, A. Signoroni, 3D scanning and geometry processing techniques for customised hand orthotics: an experimental assessment, Virtual Phys. Prototyp. 13 (2018) 105–16.
DOI: 10.1080/17452759.2018.1426328
Google Scholar
[27]
A. Buryanov, V. Kotiuk, Proportions of Hand Segments, Int. J. Morphol. 28 (2010) 755–8.
DOI: 10.4067/s0717-95022010000300015
Google Scholar
[28]
D. Hoang, C.L. Vu, M. Jackson, J.L. Huang, An Anatomical Study of Metacarpal Morphology Utilizing CT Scans: Evaluating Parameters for Antegrade Intramedullary Compression Screw Fixation of Metacarpal Fractures, J. Hand Surg. Am. 46 (2021) 149.e1-149.e8.
DOI: 10.1016/j.jhsa.2020.08.007
Google Scholar
[29]
S.Panchal-Kildare, K. Malone, Skeletal anatomy of the hand, Hand Clin. 29 (2013) 459–71.
DOI: 10.1016/j.hcl.2013.08.001
Google Scholar
[30]
T. Bjar, M.S. Alphin, Finite element analysis to assess the biomechanical behavior of a finger model gripping handles with different diameters, Biomed. Hum. Kinet. 11 (2019) 69–79.
DOI: 10.2478/bhk-2019-0009
Google Scholar
[31]
A.Yu, K.L. Yick, S.P. Ng, J. Yip, Y.F. Chan, Numerical simulation of pressure therapy glove by using Finite Element Method, Burns 42 (2016) 141–51.
DOI: 10.1016/j.burns.2015.09.013
Google Scholar
[32]
Y.Wei, Z. Zou, G. Wei, L. Ren, Z. Qian, Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation, Ann. Biomed. Eng. 48 (2020) 1181–95.
DOI: 10.1007/s10439-019-02439-2
Google Scholar
[33]
J.L. Sancho-Bru, M.C. Mora, B.E. León, A. Pérez-González, J.L. Iserte, A. Morales, Grasp modelling with a biomechanical model of the hand, Comput. Methods Biomech. Biomed. Engin. 187 (2014) 297–310.
DOI: 10.1080/10255842.2012.682156
Google Scholar
[34]
M. Nakatani, T. Kawasoe, K. Shiojima, K. Koketsu, S. Kinoshita, J. Wada, Wearable contact force sensor system based on fingerpad deformation, IEEE World Haptics Conf WHC 2011 (2011), 323–8.
DOI: 10.1109/whc.2011.5945506
Google Scholar
[35]
A. Morsucci A., M. Centin, A. Signoroni, Fast centroidal deformation for large mesh models Fast centroidal deformation for large mesh models, Proc. of Smart Tools and Applications in Graphics (STAG), 2018.
Google Scholar