Synthesis and Elaboration of Polydimethylsiloxane/Titanium Dioxide Nanocomposite Films

Article Preview

Abstract:

This work describes the synthesis and characterization of PolyDiMethylSiloxane/Titanium Dioxide (PDMS/TiO2) biopolymer nanocomposite films using two different synthesis methods: ex-situ and in-situ. The PDMS polymer were filled with titanium dioxide (TiO2) nanoparticles. The effects of varying ratios of TiO2 filler (3%, 5%, 10%, and 15%) on the film properties were investigated. The films were thin, ductile, and varied in transparency depending on the filler ratio. various techniques scanning electron microscopy and optical microscopy were used to characterize the TiO2 nanoparticles and PDMS/TiO2 nanocomposite films. Results showed that the TiO2 nanoparticles had a perfect crystalline nanostructure. The analyses of the nanocomposite films confirmed the establishment of cross-linking between the matrix and the reinforcement. The bathochromic effect was shown in the filled films due to the presence of TiO2 nanoparticles in the polymer matrix. The addition of TiO2 nanoparticles modified the PDMS matrix properties, such as transparency and antibacterial activity, making it suitable for various applications such as food or biomedical packaging. In-situ synthesis resulted in better roughness and thickness due to medium dispersion of nanoparticles in the polymer lattice, as confirmed by optical microscopy. This comparative study demonstrates that both synthesis approaches can be used for PDMS/TiO2 nanocomposite films and provides insights into the advantages and disadvantages of each method and contributes to the development of new materials with unique properties in various sectors of the market.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-174

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fischer, Polymer nanocomposites: From fundamental research to specific applications, Materials Science and Engineering: C, 23 (2003) 763–772.

DOI: 10.1016/j.msec.2003.09.148

Google Scholar

[2] P.H.C. De Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research-Ibero-American Journal of Materials, 12 (2009) 1–39.

DOI: 10.1590/s1516-14392009000100002

Google Scholar

[3] S. Li, M.-K. Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications, Nano Reviews, 1 (2010) 5214.

DOI: 10.3402/nano.v1i0.5214

Google Scholar

[4] T. Ramanathan, S. Stankovich, D.A. Dikin, H. Liu, H. Shen, S.T. Nguyen, L.C. Brinson, Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties, Journal of Polymer Science Part B, 45 (2007) 2097–2112.

DOI: 10.1002/polb.21187

Google Scholar

[5] M. Okamoto, Polymer nanocomposites, Eng, 4 (2023) 457–479.

Google Scholar

[6] M.T.S. Tavares, A.S.F. Santos, I.M.G. Santos, M.R.S. Silva, M.R.D. Bomio, E. Longo, C.A. Paskocimas, F.V. Motta, TiO2/PDMS nanocomposites for use on self-cleaning surfaces, Surface & Coatings Technology, 239 (2014) 16–19.

DOI: 10.1016/j.surfcoat.2013.11.009

Google Scholar

[7] N.K. Sethy, Z. Arif, P.K. Mishra, P. Kumar, Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: synthesis, characterization, and antibacterial test, Journal of Polymer Engineering, 40 (2020) 211–220.

DOI: 10.1515/polyeng-2019-0257

Google Scholar

[8] S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, L. Tayebi, Biomedical Applications of TiO2 Nanostructures: Recent Advances, International Journal of Nanomedicine, Volume 15 (2020) 3447–3470.

DOI: 10.2147/ijn.s249441

Google Scholar

[9] M. Taherimehr, H. YousefniaPasha, R. Tabatabaeekoloor, E. Pesaranhajiabbas, Trends and challenges of biopolymer‐based nanocomposites in food packaging, Comprehensive Reviews in Food Science and Food Safety, 20 (2021) 5321–5344.

DOI: 10.1111/1541-4337.12832

Google Scholar

[10] J. Rhim, H.-M. Park, C. Ha, Bio-nanocomposites for food packaging applications, Progress in Polymer Science, 38 (2013) 1629–1652.

DOI: 10.1016/j.progpolymsci.2013.05.008

Google Scholar

[11] C.M. Magdalane, K. Kanimozhi, M.V. Arularasu, G. Ramalingam, K. Kaviyarasu, Self-cleaning mechanism of synthesized SnO2/TiO2 nanostructure for photocatalytic activity application for waste water treatment, Surfaces and Interfaces, 17 (2019) 100346.

DOI: 10.1016/j.surfin.2019.100346

Google Scholar

[12] D. Ariyanti, A. Afiatin, P.D. Shintawati, A. Purbasari, TiO2-PDMS Super Hydrophilic Coating with Self-Cleaning and Antimicrobial Properties, Jurnal Kimia Sains Dan Aplikasi, 24 (2021) 192–199.

DOI: 10.14710/jksa.24.6.192-199

Google Scholar

[13] J.H. Kim, S.M. Hossain, H. Kang, H.-J. Park, L.D. Tijing, G.W. Park, N. Suzuki, A. Fujishima, Y. Ju1n, H.K. Shon, G.J. Kim, Hydrophilic/Hydrophobic silane grafting on TIO2 nanoparticles: photocatalytic paint for atmospheric cleaning, Catalysts, 11 (2021) 193.

DOI: 10.3390/catal11020193

Google Scholar

[14] Z. Yin, X. Chen, T. Zhou, M. Xue, M. Li, K. Liu, D. Zhou, J. Ou, Y. Xie, Z. Ren, Y. Luo, H. Zhang, Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation, Separation and Purification Technology, 286 (2022) 120504.

DOI: 10.1016/j.seppur.2022.120504

Google Scholar

[15] X. Xia, J. Liu, Y. Liu, Z. Lei, Y. Han, Z. Zheng, J. Yin, Preparation and Characterization of Biomimetic SiO2-TiO2-PDMS Composite Hydrophobic Coating with Self-Cleaning Properties for Wall Protection Applications, Coatings, 13 (2023) 224.

DOI: 10.3390/coatings13020224

Google Scholar

[16] Q. Lu, Synthesis of PDMS-Metal Oxide Hybrid Nanocomposites Using an in Situ Sol-Gel Route, 2020.

DOI: 10.37099/mtu.dc.etds/14

Google Scholar

[17] T.R. Nayaki, M.V. Chalam, T.V. Suki, S. Kar, Preparation and Characterization of Nanocrystalline TiO2 Thin Films Prepared By Sol-Gel Spin Coating Method, International Journal of Innovative Research in Science, Engineering and Technology, 03 (2014) 16707–16711.

DOI: 10.15680/ijirset.2014.0310042

Google Scholar

[18] M. Castellano, R. Cantù, M. Mauri, E. Marsano, S. Vicini, Poly(dimethylsiloxane)/TiO2 Photocatalytic Membranes Obtained by Different Electrospinning Systems, Journal of Nanoscience and Nanotechnology, 16 (2016) 6587–6594.

DOI: 10.1166/jnn.2016.12568

Google Scholar

[19] T.K. Das, M. Jesionek, Y. Çelik, A. Poater, Catalytic polymer nanocomposites for environmental remediation of wastewater, Science of the Total Environment, 901 (2023) 165772.

DOI: 10.1016/j.scitotenv.2023.165772

Google Scholar

[20] Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E.L. Gurevich, C. Esen, O. Medenbach, W. Cheng, B.N. Chichkov, A. Ostendorf, Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites, Polymers, 6 (2014) 2037–2050.

DOI: 10.3390/polym6072037

Google Scholar

[21] A. Saka, J.L. Tesfaye, N. Nagaprasad, R. Shanmugam, L.P. Dwarampudi, R. Krishnaraj, Synthesis and characterization of zinc oxide nanoparticles using moringa leaf extract, Journal of Nanomaterials, 2021 (2021) 1–6.

DOI: 10.1155/2021/4525770

Google Scholar

[22] A. Cordoba, E.M. Rivera-Muñoz, R. Velázquez-Castillo, K. Esquivel, PDMS/TIO2 and PDMS/SIO2 nanocomposites: Mechanical Properties' evaluation for improved insulating coatings, Nanomaterials, 13 (2023) 1699.

DOI: 10.3390/nano13101699

Google Scholar

[23] MICROLUBROLTM SYLCAPTM 284-S Silicone Elastomer Encapsulant Kit, Transparent, Optically Clear, 10:1 Mix, 500 Gm/ML (0.5 kg). MicroLubrol - Ultra Performance Lubricants. Available from: http://www.microlubrol.com/MICROLUBROLSYLCAP284-SSilicone ElastomerEncapsulantKitTransparent.aspx

Google Scholar

[24] N. Belgroune, B.Y. Majlis, A. Hassein-Bey, M.E.A. Benamar, Modeling and FEM simulation using fluid-structures interaction of flexible micro-bridge bending within PDMS micro-channel, IEEE International Conference on Semiconductor Electronics ICSE'14 (2014) 495–498.

DOI: 10.1109/smelec.2014.6920906

Google Scholar

[25] N. Belgroune, A. Hassein-Bey, A. Hassein-Bey, A. Tahraoui, B.Y. Majlis, M.E.A. Benamar, R. Serhane, Design and FEM simulation study of a microflow sensor based on piezoresistive PDMS composite for microfluidic systems, Microsystem Technologies, 23 (2016) 1275–1284.

DOI: 10.1007/s00542-016-2891-6

Google Scholar

[26] G. M. Ouyang, K. Y. Wang, X. Y. Chen, Enhanced electro-mechanical performance of TiO2 nano-particle modified polydimethylsiloxane (PDMS) as electroactive polymers, 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing China (2011). 614-617

DOI: 10.1109/TRANSDUCERS.2011.5969778

Google Scholar