[1]
H. Fischer, Polymer nanocomposites: From fundamental research to specific applications, Materials Science and Engineering: C, 23 (2003) 763–772.
DOI: 10.1016/j.msec.2003.09.148
Google Scholar
[2]
P.H.C. De Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research-Ibero-American Journal of Materials, 12 (2009) 1–39.
DOI: 10.1590/s1516-14392009000100002
Google Scholar
[3]
S. Li, M.-K. Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications, Nano Reviews, 1 (2010) 5214.
DOI: 10.3402/nano.v1i0.5214
Google Scholar
[4]
T. Ramanathan, S. Stankovich, D.A. Dikin, H. Liu, H. Shen, S.T. Nguyen, L.C. Brinson, Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties, Journal of Polymer Science Part B, 45 (2007) 2097–2112.
DOI: 10.1002/polb.21187
Google Scholar
[5]
M. Okamoto, Polymer nanocomposites, Eng, 4 (2023) 457–479.
Google Scholar
[6]
M.T.S. Tavares, A.S.F. Santos, I.M.G. Santos, M.R.S. Silva, M.R.D. Bomio, E. Longo, C.A. Paskocimas, F.V. Motta, TiO2/PDMS nanocomposites for use on self-cleaning surfaces, Surface & Coatings Technology, 239 (2014) 16–19.
DOI: 10.1016/j.surfcoat.2013.11.009
Google Scholar
[7]
N.K. Sethy, Z. Arif, P.K. Mishra, P. Kumar, Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: synthesis, characterization, and antibacterial test, Journal of Polymer Engineering, 40 (2020) 211–220.
DOI: 10.1515/polyeng-2019-0257
Google Scholar
[8]
S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, L. Tayebi, Biomedical Applications of TiO2 Nanostructures: Recent Advances, International Journal of Nanomedicine, Volume 15 (2020) 3447–3470.
DOI: 10.2147/ijn.s249441
Google Scholar
[9]
M. Taherimehr, H. YousefniaPasha, R. Tabatabaeekoloor, E. Pesaranhajiabbas, Trends and challenges of biopolymer‐based nanocomposites in food packaging, Comprehensive Reviews in Food Science and Food Safety, 20 (2021) 5321–5344.
DOI: 10.1111/1541-4337.12832
Google Scholar
[10]
J. Rhim, H.-M. Park, C. Ha, Bio-nanocomposites for food packaging applications, Progress in Polymer Science, 38 (2013) 1629–1652.
DOI: 10.1016/j.progpolymsci.2013.05.008
Google Scholar
[11]
C.M. Magdalane, K. Kanimozhi, M.V. Arularasu, G. Ramalingam, K. Kaviyarasu, Self-cleaning mechanism of synthesized SnO2/TiO2 nanostructure for photocatalytic activity application for waste water treatment, Surfaces and Interfaces, 17 (2019) 100346.
DOI: 10.1016/j.surfin.2019.100346
Google Scholar
[12]
D. Ariyanti, A. Afiatin, P.D. Shintawati, A. Purbasari, TiO2-PDMS Super Hydrophilic Coating with Self-Cleaning and Antimicrobial Properties, Jurnal Kimia Sains Dan Aplikasi, 24 (2021) 192–199.
DOI: 10.14710/jksa.24.6.192-199
Google Scholar
[13]
J.H. Kim, S.M. Hossain, H. Kang, H.-J. Park, L.D. Tijing, G.W. Park, N. Suzuki, A. Fujishima, Y. Ju1n, H.K. Shon, G.J. Kim, Hydrophilic/Hydrophobic silane grafting on TIO2 nanoparticles: photocatalytic paint for atmospheric cleaning, Catalysts, 11 (2021) 193.
DOI: 10.3390/catal11020193
Google Scholar
[14]
Z. Yin, X. Chen, T. Zhou, M. Xue, M. Li, K. Liu, D. Zhou, J. Ou, Y. Xie, Z. Ren, Y. Luo, H. Zhang, Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation, Separation and Purification Technology, 286 (2022) 120504.
DOI: 10.1016/j.seppur.2022.120504
Google Scholar
[15]
X. Xia, J. Liu, Y. Liu, Z. Lei, Y. Han, Z. Zheng, J. Yin, Preparation and Characterization of Biomimetic SiO2-TiO2-PDMS Composite Hydrophobic Coating with Self-Cleaning Properties for Wall Protection Applications, Coatings, 13 (2023) 224.
DOI: 10.3390/coatings13020224
Google Scholar
[16]
Q. Lu, Synthesis of PDMS-Metal Oxide Hybrid Nanocomposites Using an in Situ Sol-Gel Route, 2020.
DOI: 10.37099/mtu.dc.etds/14
Google Scholar
[17]
T.R. Nayaki, M.V. Chalam, T.V. Suki, S. Kar, Preparation and Characterization of Nanocrystalline TiO2 Thin Films Prepared By Sol-Gel Spin Coating Method, International Journal of Innovative Research in Science, Engineering and Technology, 03 (2014) 16707–16711.
DOI: 10.15680/ijirset.2014.0310042
Google Scholar
[18]
M. Castellano, R. Cantù, M. Mauri, E. Marsano, S. Vicini, Poly(dimethylsiloxane)/TiO2 Photocatalytic Membranes Obtained by Different Electrospinning Systems, Journal of Nanoscience and Nanotechnology, 16 (2016) 6587–6594.
DOI: 10.1166/jnn.2016.12568
Google Scholar
[19]
T.K. Das, M. Jesionek, Y. Çelik, A. Poater, Catalytic polymer nanocomposites for environmental remediation of wastewater, Science of the Total Environment, 901 (2023) 165772.
DOI: 10.1016/j.scitotenv.2023.165772
Google Scholar
[20]
Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E.L. Gurevich, C. Esen, O. Medenbach, W. Cheng, B.N. Chichkov, A. Ostendorf, Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites, Polymers, 6 (2014) 2037–2050.
DOI: 10.3390/polym6072037
Google Scholar
[21]
A. Saka, J.L. Tesfaye, N. Nagaprasad, R. Shanmugam, L.P. Dwarampudi, R. Krishnaraj, Synthesis and characterization of zinc oxide nanoparticles using moringa leaf extract, Journal of Nanomaterials, 2021 (2021) 1–6.
DOI: 10.1155/2021/4525770
Google Scholar
[22]
A. Cordoba, E.M. Rivera-Muñoz, R. Velázquez-Castillo, K. Esquivel, PDMS/TIO2 and PDMS/SIO2 nanocomposites: Mechanical Properties' evaluation for improved insulating coatings, Nanomaterials, 13 (2023) 1699.
DOI: 10.3390/nano13101699
Google Scholar
[23]
MICROLUBROLTM SYLCAPTM 284-S Silicone Elastomer Encapsulant Kit, Transparent, Optically Clear, 10:1 Mix, 500 Gm/ML (0.5 kg). MicroLubrol - Ultra Performance Lubricants. Available from: http://www.microlubrol.com/MICROLUBROLSYLCAP284-SSilicone ElastomerEncapsulantKitTransparent.aspx
Google Scholar
[24]
N. Belgroune, B.Y. Majlis, A. Hassein-Bey, M.E.A. Benamar, Modeling and FEM simulation using fluid-structures interaction of flexible micro-bridge bending within PDMS micro-channel, IEEE International Conference on Semiconductor Electronics ICSE'14 (2014) 495–498.
DOI: 10.1109/smelec.2014.6920906
Google Scholar
[25]
N. Belgroune, A. Hassein-Bey, A. Hassein-Bey, A. Tahraoui, B.Y. Majlis, M.E.A. Benamar, R. Serhane, Design and FEM simulation study of a microflow sensor based on piezoresistive PDMS composite for microfluidic systems, Microsystem Technologies, 23 (2016) 1275–1284.
DOI: 10.1007/s00542-016-2891-6
Google Scholar
[26]
G. M. Ouyang, K. Y. Wang, X. Y. Chen, Enhanced electro-mechanical performance of TiO2 nano-particle modified polydimethylsiloxane (PDMS) as electroactive polymers, 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing China (2011). 614-617
DOI: 10.1109/TRANSDUCERS.2011.5969778
Google Scholar