Intensity of Neutralization of Dangerous Gases during Deposition with Small-Dispersion Water

Article Preview

Abstract:

The intensity of neutralization of dangerous gases (chlorine, sulfur dioxide, hydrogen cyanide, phosgene, hydrochloric acid, ammonia) is researching during deposition with small-dispersion water. For this purpose, a mathematical model of neutralization of a dangerous gas, which is lighter than air, with fine water was modified for use in neutralizing a dangerous gas, which is heavy relative to air. The model takes into account the main parameters of sorption (environmental conditions, physical and chemical properties of the dangerous gas, parameters of the liquid flow supplied for deposition), which minimizes the forecasting time and is critical in the elimination of an accident with a release of dangerous gases. It was found that when dangerous gases are deposited in a finely dispersed water stream, the determining parameter is the Henry's constant of the dangerous gas, rather than the intensity of the fine water stream. It is confirmed that for dangerous gases that are poorly soluble in water (have small values of Henry's constant), it is necessary to add additives to the water stream that increase the chemical activity of the solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-25

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Civil Protection Law of Ukraine. URL: https://zakon.rada.gov.ua/ laws/show/5403-17#Text [in Ukrainian].

Google Scholar

[2] V. Tiutiunyk, H. Ivanets, I. Tolkunov, E. Stetsyuk, System approach for readiness assessment units of civil defense to actions at emergency situations, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1 (2018) 99–105 [in Ukrainian].

DOI: 10.29202/nvngu/2018-1/7

Google Scholar

[3] K. Korytchenko, O. Sakun, D. Dubinin, Y. Khilko, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration, Eastern-European Journal of Enterprise Technologies. 3/5 (93) (2018) 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[4] O. Popov, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, A. Pomaza-Ponomarenko, Emergencies at Potentially Dangerous Objects Causing Atmosphere Pollution: Peculiarities of Chemically Hazardous Substances Migration, Studies in Systems, Decision and Control. 298 (2020) 151–163.

DOI: 10.1007/978-3-030-48583-2_10

Google Scholar

[5] M. Kustov, V. Kalugin, V. Tutunik, O. Tarakhno, Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere, Voprosy Khimii i Khimicheskoi Tekhnologii. 1 (2019) 92–99.

DOI: 10.32434/0321-4095-2019-122-1-92-99

Google Scholar

[6] A. Semko, M. Beskrovnaya, S. Vinogradov, I. Hritsina, N. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts, Journal of Theoretical and Applied Mechanics. 3 (2017) 655–664.

Google Scholar

[7] M. V. Kustov, O. Ie. Basmanov, O. A. Tarasenko, A. S. Melnychenko, Prohnozuvannia masshtabiv khimichnoho urazhennia za umov osadzhennia nebezpechnoi rechovyny, Problemy nadzvychainykh sytuatsii. 33 (2021) 72–83 [in Ukrainian].

Google Scholar

[8] Ammonia. URL: https://en.wikipedia.org/wiki/ Ammonia.

Google Scholar

[9] Chlorine. URL: https://en.wikipedia.org/wiki/ Chlorine.

Google Scholar

[10] M. Kustov, A. Melnychenko, D. Taraduda, A. Korogodska, Research of the Chlorine Sorption Processes when its Deposition by Water Aerosol, Materials Science Forum. 1038 (2021) 361–373.

DOI: 10.4028/www.scientific.net/msf.1038.361

Google Scholar

[11] M. Kustov, A. Melnychenko, O. Basmanov, O. Tarasenko, Modeling of Gas Sorption Process by Dispersed Liquid Flow, Materials of Science Forum. 1068 (2022) 239–247.

DOI: 10.4028/p-jdydlo

Google Scholar

[12] A. Melnychenko, M. Kustov, O. Basmanov, O. Tarasenko, O. Bogatov, M. Kravtsov, O. Petrova, T. Pidpala, O. Karatieieva, N. Shevchuk, Devising a Procedure to Forecast the Level of Chemical Damage to the Atmosphereduring Active Deposition of Dangerous Gases, Eastern-European Journal of Enterprise Technologies. 1(10(115)) (2022) 31–40.

DOI: 10.15587/1729-4061.2022.251675

Google Scholar

[13] M. Kustov, E. Slepuzhnikov, V. Lipovoy, I. Khmyrov, D. Firdovsi, O. Buskin, Procedure for implementation of the method of artificial deposition of radioactive substances from the atmosphere, Nuclear and Radiation Safety. 3/83 (2019) 13–25.

DOI: 10.32918/nrs.2019.3(83).02

Google Scholar

[14] Occupants damage ammonia gas pipeline in Kharkiv region. URL: https://tsn.ua/ukrayina/u-kup-yanskomu-rayoni-okupanti-poshkodili-truboprovid-iz-amiakom-detali-2344162.html [in Ukrainian].

Google Scholar

[15] Toxic gas at Birmingham water treatment plant sends 55 workers to hospitals. URL: https://www.al.com/news/birmingham/2019/02/multiple-ambulances-called-in-hazmat-incident-at-birmingham-water-treatment-plant.html

Google Scholar

[16] V. Talhofer, Š. Hošková-Mayerová, Method of Selecting a Decontamination Site Deployment for Chemical Accident Consequences Elimination: Application of Multi-Criterial Analysis, ISPRS International Journal of Geo-Information. 8(4) (2019) 171.

DOI: 10.3390/ijgi8040171

Google Scholar

[17] A. Leelossy, F. Molnar, F. Izsak, A. Havasi, I. Lagzi, R. Meszaros, Dispersion modeling of air pollutants in the atmosphere: a review, Central European Journal of Geosciences. 6 (2014) 257–278.

Google Scholar

[18] L. Hoinaski, D. Franco, H. Lisboa, Comparison of plume lateral dispersion coefficients schemes: Effect of averaging time, Atmospheric Pollution Research. 7 (2016) 134–141.

DOI: 10.1016/j.apr.2015.08.004

Google Scholar

[19] V. Tatarinov, U. Prus, A. Kirsanov, Decision support software for chemical accident elimination management, AIP Conference Proceedings. 2195 (2019) 020076.

DOI: 10.1063/1.5140176

Google Scholar

[20] F. Khan, S. Rathnayaka, S. Ahmed, Methods and models in process safety and risk management: Past, present and future, Process Safety and Environmental Protection. 98 (2015) 116–147.

DOI: 10.1016/j.psep.2015.07.005

Google Scholar

[21] M. Martínez-García, Y. Zhang, K. Suzuki, Y.D. Zhang, Deep Recurrent Entropy Adaptive Model for System Reliability Monitoring, IEEE Transactions on Industrial Informatics. 17(2) (2021) 839–848.

DOI: 10.1109/tii.2020.3007152

Google Scholar

[22] M.V. Kustov, V.D. Kalugin, Modeling the intensity of deposition of gaseous toxic chemicals by atmospheric precipitation, East European Science Journal. 2(6) (2016) 52–59 [in Ukrainian].

Google Scholar

[23] J. Vieceli, M. Roeselova, D.J. Tobias, Accommodation coefficients for water vapor at the air/water interface, Chemical Physics Letters. 393 1-3 (2004) 249–255.

DOI: 10.1016/j.cplett.2004.06.038

Google Scholar

[24] P. Davidovits, C.E. Kolb,  L.R. Williams and other, Mass Accommodation and Chemical Reactions at Gas−Liquid Interfaces, Chemical Reviews. 106 (4) (2006) 1323 – 1354.

DOI: 10.1021/cr040366k

Google Scholar

[25] R. Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, Mainz: Max-Planck Institute of Chemistry. (1999) 107.

Google Scholar