[1]
Foyouzat, M. A., Mofid, M., An analytical solution for bending of axisymmetric circular/annular plates resting on a variable elastic foundation. European Journal of Mechanics - A/Solids. 74 (2019) 462–470
DOI: 10.1016/j.euromechsol.2019.01.006
Google Scholar
[2]
Surianinov, M.H., Krutii, Y.S., Karnaukhova, А.S., & Klymenko, О.M., Analytical method for calculating annular plates on a variable elastic foundation. Modern Construction and Architecture. 2 (2022) 37–43
DOI: 10.31650/2786-6696-2022-2-37-43
Google Scholar
[3]
Surianinov, M., Krutii, Y., Kirichenko, D., & Klymenko, O., Calculation of annular plates on an elastic foundation with a variable bedding factor. Mechanics and Mathematical Methods. 4(2) (2022) 43–52
DOI: 10.31650/2618-0650-2022-4-2-43-52
Google Scholar
[4]
Surianinov, M., Krutii, Y., Klymenko, O., Vakulenko, V. & Rudakov, S. Axisymmetric bending of circular plates on a variable elastic foundation. Construction Technologies and Architecture. 9 (2023) 3–10
DOI: 10.4028/p-L9yr2n
Google Scholar
[5]
Krutii, Y., Surianinov, M., Klymenko, O., Karnaukhova, H., & Perperi, A., Analytical method for calculating ring plates on an elastic foundation with an arbitrary continuously variable bedding factor. Key Engineering Materials. 1005 (2024) 121–132
DOI: 10.4028/p-gp8pyq
Google Scholar
[6]
Karaşin, H., Gülkan, P., & Aktas, G., A finite grid solution for circular plates on elastic foundations. KSCE Journal of Civil Engineering. 19(4) (2014) 1157–1163
DOI: 10.1007/s12205-014-0713-x
Google Scholar
[7]
Crook, A.W., A transfer matrix method for calculating the elastic behaviour of annular plates. The Journal of Strain Analysis for Engineering Design. 26(1) (1991) 65–73
DOI: 10.1243/03093247V261065
Google Scholar
[8]
Vaskova, J., Matečková, P., Software for Design and Assessment of Rotationally Symmetrically Loaded Reinforced Concrete Slabs in the Shape of Circle or Ring. Applied Mechanics and Materials. 749 (2015) 368–372
DOI: 10.4028/www.scientific.net/amm.749.368
Google Scholar
[9]
Vivio, F., Vullo, V., Closed form solutions of axisymmetric bending of circular plates having non-linear variable thickness. International Journal of Mechanical Sciences. 52(9) (2010) 1234–1252
DOI: 10.1016/j.ijmecsci.2010.05.011
Google Scholar
[10]
Behravan Rad, A., Semi-Analytical solution for functionally graded solid circular and annular plates resting on elastic foundations subjected to axisymmetric transverse loading. Advances in Applied Mathematics and Mechanics. 4(2) (2012) 205–222
DOI: 10.4208/aamm.10-m11104
Google Scholar
[11]
Behravan Rad, A., Alibeigloo, A., Semi-Analytical solution for the static analysis of 2D functionally graded solid and annular circular plates resting on elastic foundation. Mechanics of Advanced Materials and Structures. 20(7) (2013) 515–528
DOI: 10.1080/15376494.2011.634088
Google Scholar
[12]
Hosseini-Hashemi, S., Akhavan, H., Taher, H. R. D., Daemi, N., Alibeigloo, A., Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation. Materials & Design. 31(4) (2010) 1871–1880
DOI: 10.1016/j.matdes.2009.10.060
Google Scholar
[13]
Kiani, Y., Eslami, M.R., Instability of heated circular FGM plates on a partial Winkler-type foundation. Acta Mechanica. 224(5) (2013) 1045–1060
DOI: 10.1007/s00707-012-0800-3
Google Scholar
[14]
Golmakani, M.E., Alamatian, J., Large deflection analysis of shear deformable radially functionally graded sector plates on two-parameter elastic foundations. European Journal of Mechanics - A/Solids. 42 (2013) 251–265
DOI: 10.1016/j.euromechsol.2013.06.006
Google Scholar
[15]
Bagheri, H., Kiani, Y., Eslami, M.R., Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Computers & Mathematics with Applications. 75(5) (2018) 1566–1581
DOI: 10.1016/j.camwa.2017.11.021
Google Scholar
[16]
Hasrati, E., Ansari, R., & Rouhi, H., A numerical approach to the elastic/plastic axisymmetric buckling analysis of circular and annular plates resting on elastic foundation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 233(19–20) (2019) 7041–7061
DOI: 10.1177/0954406219867726
Google Scholar
[17]
Zhao, H., Wang, L., Issakhov, A., & Safarpour, H., Poroelasticity framework for stress/strain responses of the multi-phase circular/annular systems resting on various types of elastic foundations. The European Physical Journal Plus. 136 (8) (2021)
DOI: 10.1140/epjp/s13360-021-01761-w
Google Scholar
[18]
Krutii, Y.S., Sur'yaninov, M.G., & Karnaukhova, G.S., Calculation method for axisymmetric bending of circular and annular plates on a changeable elastic bed. Part 1. Analytical relations. Strength of Materials. 53(2) (2021) 247–257
DOI: 10.1007/s11223-021-00282-2
Google Scholar