Analytical Calculation of Annular Plates Supported on an Elastic Foundation with Power-Law Inhomogeneity

Article Preview

Abstract:

The problem of axisymmetric bending of a ring plate, which is under the influence of a constant uniformly distributed transverse load and rests on a non-uniform elastic Winkler foundation, is considered. The inhomogeneity of the elastic foundation is given by a power function with an arbitrary non-negative power exponent . In analytical form, the fundamental functions and a partial solution of the corresponding differential equation are found. These functions are dimensionless and are represented by absolutely and uniformly convergent power series. In turn, formulas for the parameters of the stress-strain state of the plate are expressed through the specified functions. In fact, the calculation of the plate is reduced to the procedure of numerical implementation of explicit analytical formulas. The practical application of the obtained solutions is demonstrated using the example of a concrete slab with both fixed contours, resting on a cubic-variable elastic foundation

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-36

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Foyouzat, M. A., Mofid, M., An analytical solution for bending of axisymmetric circular/annular plates resting on a variable elastic foundation. European Journal of Mechanics - A/Solids. 74 (2019) 462–470

DOI: 10.1016/j.euromechsol.2019.01.006

Google Scholar

[2] Surianinov, M.H., Krutii, Y.S., Karnaukhova, А.S., & Klymenko, О.M., Analytical method for calculating annular plates on a variable elastic foundation. Modern Construction and Architecture. 2 (2022) 37–43

DOI: 10.31650/2786-6696-2022-2-37-43

Google Scholar

[3] Surianinov, M., Krutii, Y., Kirichenko, D., & Klymenko, O., Calculation of annular plates on an elastic foundation with a variable bedding factor. Mechanics and Mathematical Methods. 4(2) (2022) 43–52

DOI: 10.31650/2618-0650-2022-4-2-43-52

Google Scholar

[4] Surianinov, M., Krutii, Y., Klymenko, O., Vakulenko, V. & Rudakov, S. Axisymmetric bending of circular plates on a variable elastic foundation.  Construction Technologies and Architecture. 9 (2023) 3–10

DOI: 10.4028/p-L9yr2n

Google Scholar

[5] Krutii, Y., Surianinov, M., Klymenko, O., Karnaukhova, H., & Perperi, A., Analytical method for calculating ring plates on an elastic foundation with an arbitrary continuously variable bedding factor. Key Engineering Materials. 1005 (2024) 121–132

DOI: 10.4028/p-gp8pyq

Google Scholar

[6] Karaşin, H., Gülkan, P., & Aktas, G., A finite grid solution for circular plates on elastic foundations. KSCE Journal of Civil Engineering. 19(4) (2014) 1157–1163

DOI: 10.1007/s12205-014-0713-x

Google Scholar

[7] Crook, A.W., A transfer matrix method for calculating the elastic behaviour of annular plates. The Journal of Strain Analysis for Engineering Design. 26(1) (1991) 65–73

DOI: 10.1243/03093247V261065

Google Scholar

[8] Vaskova, J., Matečková, P., Software for Design and Assessment of Rotationally Symmetrically Loaded Reinforced Concrete Slabs in the Shape of Circle or Ring. Applied Mechanics and Materials. 749 (2015) 368–372

DOI: 10.4028/www.scientific.net/amm.749.368

Google Scholar

[9] Vivio, F., Vullo, V., Closed form solutions of axisymmetric bending of circular plates having non-linear variable thickness. International Journal of Mechanical Sciences. 52(9) (2010) 1234–1252

DOI: 10.1016/j.ijmecsci.2010.05.011

Google Scholar

[10] Behravan Rad, A., Semi-Analytical solution for functionally graded solid circular and annular plates resting on elastic foundations subjected to axisymmetric transverse loading. Advances in Applied Mathematics and Mechanics. 4(2) (2012) 205–222

DOI: 10.4208/aamm.10-m11104

Google Scholar

[11] Behravan Rad, A., Alibeigloo, A., Semi-Analytical solution for the static analysis of 2D functionally graded solid and annular circular plates resting on elastic foundation. Mechanics of Advanced Materials and Structures. 20(7) (2013) 515–528

DOI: 10.1080/15376494.2011.634088

Google Scholar

[12] Hosseini-Hashemi, S., Akhavan, H., Taher, H. R. D., Daemi, N., Alibeigloo, A., Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation. Materials & Design. 31(4) (2010) 1871–1880

DOI: 10.1016/j.matdes.2009.10.060

Google Scholar

[13] Kiani, Y., Eslami, M.R., Instability of heated circular FGM plates on a partial Winkler-type foundation. Acta Mechanica. 224(5) (2013) 1045–1060

DOI: 10.1007/s00707-012-0800-3

Google Scholar

[14] Golmakani, M.E., Alamatian, J., Large deflection analysis of shear deformable radially functionally graded sector plates on two-parameter elastic foundations. European Journal of Mechanics - A/Solids. 42 (2013) 251–265

DOI: 10.1016/j.euromechsol.2013.06.006

Google Scholar

[15] Bagheri, H., Kiani, Y., Eslami, M.R., Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Computers & Mathematics with Applications. 75(5) (2018) 1566–1581

DOI: 10.1016/j.camwa.2017.11.021

Google Scholar

[16] Hasrati, E., Ansari, R., & Rouhi, H., A numerical approach to the elastic/plastic axisymmetric buckling analysis of circular and annular plates resting on elastic foundation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 233(19–20) (2019) 7041–7061

DOI: 10.1177/0954406219867726

Google Scholar

[17] Zhao, H., Wang, L., Issakhov, A., & Safarpour, H., Poroelasticity framework for stress/strain responses of the multi-phase circular/annular systems resting on various types of elastic foundations. The European Physical Journal Plus. 136 (8) (2021)

DOI: 10.1140/epjp/s13360-021-01761-w

Google Scholar

[18] Krutii, Y.S., Sur'yaninov, M.G., & Karnaukhova, G.S., Calculation method for axisymmetric bending of circular and annular plates on a changeable elastic bed. Part 1. Analytical relations. Strength of Materials. 53(2) (2021) 247–257

DOI: 10.1007/s11223-021-00282-2

Google Scholar