[1]
Task Committee on Blast-Resistant Design of the Petrochemical Committee of the Energy Division of ASCE, Design of Blast-Resistant Buildings in Petrochemical Facilities, ASCE Press, third ed., 2025.
DOI: 10.1061/9780784410882
Google Scholar
[2]
Richard A. Behr, Architectural Glass to Resist Seismic and Extreme Climatic Events: A volume in Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing, 2009.
DOI: 10.1533/9781845696856
Google Scholar
[3]
E06 Committee, Standard Practice for Determining Load Resistance of Glass in Buildings. ASTM E1300-04 Standard, 2017.
Google Scholar
[4]
Federal Emergency Management Agency, FEMA 427: Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks: Risk Management Series, Kindle Edition, 2011.
Google Scholar
[5]
P. A. Hooper, R. A. M. Sukhram, B. R. K. Blackman, J. P. Dear, On the blast resistance of laminated glass. International Journal of Solids and Structures. 49(6) (2012) 899–918.
DOI: 10.1016/j.ijsolstr.2011.12.008
Google Scholar
[6]
H. Ataei, J. C. Anderson, Mitigating the Injuries from Flying Glass Due to Air Blast. Forensic Engineering 2012: Gateway to a Safer Tomorrow. (2012) 1–10.
DOI: 10.1061/9780784412640.015
Google Scholar
[7]
F. M. Mazzolani. Urban Habitat Constructions Under Catastrophic Events: Proceedings of the COST C26 Action Final Conference. CRC Press. (2010).
DOI: 10.1201/b10559-3
Google Scholar
[8]
Qingfei Meng, Chengqing Wu, Yu Su, Jun Li, Jian Liu, Jiabao Pang, Experimental and numerical investigation of blast resistant capacity of high performance geopolymer concrete panels, Composites Part B: Engineering. 171 (2019) 9–19.
DOI: 10.1016/j.compositesb.2019.04.010
Google Scholar
[9]
Zhixian Hong, Ming Tao, Xuejiao Cui, Chengqing Wu, Mingsheng Zhao, Experimental and numerical studies of the blast-induced overbreak and underbreak in underground roadways, Underground Space. 8 (2023) 61–79.
DOI: 10.1016/j.undsp.2022.04.007
Google Scholar
[10]
C. Bedon, D. Markovic, V. Karlos, M. Larcher, Numerical investigation of glass windows under near-field blast, Coupled Systems Mechanics. 12 (2) (2023) 167–181.
Google Scholar
[11]
A. Kovalov, Y. Otrosh, S. Vedula, О. Danilin, T. Kovalevska, Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors, Scientific Bulletin of National Mining University. 3 (2019) 46-53.
DOI: 10.29202/nvngu/2019-3/9
Google Scholar
[12]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical Evaluation of Wind Speed Influence on Accident Toxic Spill Consequences Scales, Environ.Clim. Technol. 27(1) (2023) 450–463.
DOI: 10.2478/rtuect-2023-0033
Google Scholar
[13]
V. Men'shikov, Y. Skob, M. Ugryumov, Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects, Fluid Dynamics. 26, 6 (1991) 889-896.
DOI: 10.1007/bf01056792
Google Scholar
[14]
Y. Skob, Y. Dreval, A. Vasilchenko, R. Maiboroda, Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power, Key Engineering Materials. 952 (2023) 121–129.
DOI: 10.4028/p-st1vet
Google Scholar
[15]
R. Maiboroda, M. Zhuravskij, Y. Otrosh, V. Karpuntsov, Determination of the Required Area of Easily Removable Structures to Protect against Progressive Collapse. In Key Engineering Materials. 1004 (2024) 73–83.
DOI: 10.4028/p-v0xa6h
Google Scholar
[16]
Y. Skob, S. Yakovlev, O. Pichugina, M. Kalinichenko, K. Korobchynskyi, Mathematical Modelling of Gas Admixtures Release, Dispersion and Explosion in Open Atmosphere, CEUR Workshop Proceedings. 3641 (2023) 168–181.
Google Scholar
[17]
Y. Skob, S. Yakovlev, K. Korobchynskyi, M. Kalinichenko, Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure, Computation 11(2) (2023) 19
DOI: 10.3390/computation11020019
Google Scholar
[18]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies, J. Environ. Clim. Technol. 23 (2019) 1–14.
DOI: 10.2478/rtuect-2019-0075
Google Scholar
[19]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical assessment of hydrogen explosion consequences in a mine tunnel, Int. J. Hydrog. Energy. 46 (2021) 12361–12371.
DOI: 10.1016/j.ijhydene.2020.09.067
Google Scholar
[20]
K. Кorytchehko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Probl. At. Sci. Technol. 116 (2018) 194–199.
Google Scholar
[21]
Y. Skob, O. Khimich, O. Pichugina, A. Hulianytskyi, O. Kartashov, Mathematical Modeling of Pressure Effects from Hydrogen Explosion, CEUR Workshop Proceedings. 3777 (2024) 282–299.
Google Scholar
[22]
Y. Skob, S. Yakovlev, O. Pichugina, M. Kalinichenko, O. Kartashov, Numerical Evaluation of Harmful Consequences after Accidental Explosion at a Hydrogen Filling Station, J. Environ. Clim. Technol. 28(1) (2024) 181–194.
DOI: 10.2478/rtuect-2024-0015
Google Scholar
[23]
Y. Skob, M. Ugryumov, Y. Dreval. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects, Materials Science Forum. 1006 (2020) 117–122.
DOI: 10.4028/www.scientific.net/msf.1006.117
Google Scholar
[24]
Y. Skob, M. Ugryumov, Y. Dreval, S. Artemiev, Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion, Materials Science Forum. 1038 (2021) 430-436.
DOI: 10.4028/www.scientific.net/msf.1038.430
Google Scholar
[25]
Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[26]
Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., Venzhego, G. Methodology for calculating the technical state of a reinforced-concrete fragment in a building influenced by high temperature. Materials Science Forum. 1006 (2020) 166–172.
DOI: 10.4028/www.scientific.net/msf.1006.166
Google Scholar
[27]
A. Kovalov, Y. Otrosh, M. Surianinov, T. Kovalevska, Experimental and Computer Researches of Ferroconcrete Floor Slabs at High-Temperature Influences, Materials Science Forum. 968 (2019) 361-367.
DOI: 10.4028/www.scientific.net/msf.968.361
Google Scholar
[28]
Y. Otrosh, M. Surianinov, A. Golodnov, O. Starova, Experimental and Computer Researches of Ferroconcrete Beams at High-Temperature Influences, Materials Science Forum. 968 (2019) 355-360.
DOI: 10.4028/www.scientific.net/msf.968.355
Google Scholar
[29]
Pasternak, V., Ruban, A., Surianinov, M., Otrosh, Y., Romin, A. Software Modeling Environment for Solving Problems of Structurally Inhomogeneous Materials. In Materials Science Forum. 1068 (2022) 215–222.
DOI: 10.4028/p-h1c2rp
Google Scholar
[30]
G Guzii, Y Otrosh, O Guzii, A Kovalov, K Sotiriadis. Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire. In Materials Science Forum. 1038 (2021) 524-530.
DOI: 10.4028/www.scientific.net/msf.1038.524
Google Scholar
[31]
Andrii Kovalov, Yurii Otrosh, Oleksandr Chernenko, Maxim Zhuravskij, Marcin Anszczak. Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode. In Materials Science Forum. 1038 (2021) 514-523.
DOI: 10.4028/www.scientific.net/msf.1038.514
Google Scholar
[32]
Kovalov, A., Otrosh, Y., Kovalevska, T., Safronov, S. Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings. In Materials Science and Engineering. IOP Publishing. 708 (1) (2019) 012058.
DOI: 10.1088/1757-899x/708/1/012058
Google Scholar