[1]
S.P. Timoshenko, A Course in Elasticity Theory [in Russian]. Naukova Dumka, Kiev, 1972.
Google Scholar
[2]
Yu. Krutii, M. Surianinov, S. Petrash, M. Yezhov, Development of an analytical method for calculating beams on a variable elastic Winkler foundation. IOP Conference Series: Materials Science and Engineering. 1162(1) (2021) 012009
DOI: 10.1088/1757-899X/1162/1/012009
Google Scholar
[3]
Y. Krutii, M. Surianinov, V. Vakulenko, M. Soroka, N. Vasilieva, Analytical Calculation of Beams on Winkler's Variable Elastic Foundation. Advances in Science and Technology. 156 (2024) 75–80
DOI: 10.4028/p-PD9h3g
Google Scholar
[4]
D. Cao, B. Wang, W. Hu, Y. Gao, Free Vibration of Axially Functionally Graded Beam. Mechanics of Functionally Graded Materials and Structures. IntechOpen, 2020
DOI: 10.5772/intechopen.85835
Google Scholar
[5]
T.S. Jang, A general method for analyzing moderately large deflections of a non-uniform beam: An infinite Bernoulli-Euler-von Karman beam on a nonlinear elastic foundation. Acta Mechanica. 225 (2014.) 1967–1984
DOI: 10.1007/s00707-013-1077-x
Google Scholar
[6]
T.S. Jang, H.G. Sung, A new semi-analytical method for the non-linear static analysis of an infinite beam on a non-linear elastic foundation: a general approach to a variable beam cross-section. International Journal of Non-Linear Mechanics. 47 (2012) 132–139
DOI: 10.1016/j.ijnonlinmec.2012.04.005
Google Scholar
[7]
G.C. Tsiatas, Nonlinear analysis of non-uniform beams on nonlinear elastic foundation. Acta Mechanica. 209 (2010) 141–152
DOI: 10.1007/s00707-009-0174-3
Google Scholar
[8]
A.M. Poliakov, P.K. Shtanko, V.I. Pakhaliuk, Calculation of a variable cross-section beam on an elastic foundation with two coefficients of compliance. Journal of Physics: Conference Series. 1353 (2019) 012110
DOI: 10.1088/1742-6596/1353/1/012110
Google Scholar
[9]
P. Deminov, The stiffness of a reinforced concrete beam with random parameters the cracks formation. E3S Web of Conferences. 410 (2023) 02025. https://doi.org/10.1051/e3sconf/ 202341002025
DOI: 10.1051/e3sconf/202341002025
Google Scholar
[10]
U. Mutman, Free vibration analysis of an Euler beam of variable width on the Winkler foundation using homotopy perturbation method. Mathematical Problems in Engineering. 1–9 (2013)
DOI: 10.1155/2013/721294
Google Scholar
[11]
S. Akhmediev, V. Mikhailov, G. Tazhenova, M. Bakirov, T. Filippova, D. Tokanov, Calculating a beam of variable section lying on an elastic foundation. Journal of Applied Engineering Sciences. 21(1) (2023) 87–93
DOI: 10.5937/jaes0-38800
Google Scholar
[12]
M. Nikodým, K. Frydrýšek. About central difference method applied for the beams on elastic foundation. Transactions of the VŠB-Technical University of Ostrava, Mechanical Series. 2 (2013) 133-146
DOI: 10.22223/tr.2013-2/1967
Google Scholar
[13]
Y.S. Krutii, Development of a method for solving problems of stability and vibrations of deformable systems with variable continuous parameters [in Ukrainian]. Sc.D. diss., Odesa, 2016.
Google Scholar
[14]
Y.S. Krutii, Construction of a solution of the problem of stability of a bar with arbitrary continuous parameters. Journal of Mathematical Sciences. 231 (2018) 665–677
DOI: 10.1007/s10958-018-3843-8
Google Scholar
[15]
V.I. Shvab'yuk, Y.S. Krutii, M.G. Sur'yaninov, Investigation of the Free Vibrations of Bar Elements with Variable Parameters Using the Direct Integration Method. Strength of Materials. 48 (2016) 384–393
DOI: 10.1007/s11223-016-9776-x
Google Scholar
[16]
Y.S. Krutii, M.G. Sur'yaninov, G.S. Karnaukhova, Calculation Method for Axisymmetric Bending of Circular and Annular Plates on a Changeable Elastic Bed. Part 1. Analytical Relations. Strength of Materials. 53(2) (2021) 247–257
DOI: 10.1007/s11223-021-00282-2
Google Scholar
[17]
F.R. Gantmacher, The Theory of Matrices. Chelsea, New York, 1959.
Google Scholar