[1]
I. Mohammed and A. R. A. Talib, "Chapter 10 - Synthetic/natural fiber composites for aircraft engine fire designated zones and their potential application in automotive engines," in Biocomposite and Synthetic Composites for Automotive Applications, S. M. Sapuan and R. A. Ilyas, Eds., in Woodhead Publishing Series in Composites Science and Engineering. , Woodhead Publishing, 2021, p.255–274.
DOI: 10.1016/B978-0-12-820559-4.00010-9
Google Scholar
[2]
I. M. Astika, "Hardness improvement of aluminum alloy 2024 t3 after artificial aging treatment," IOP Conf. Ser. Mater. Sci. Eng., vol. 539, no. 1, p.012004, Jun. 2019.
DOI: 10.1088/1757-899X/539/1/012004
Google Scholar
[3]
S. Li et al., "Development and applications of aluminum alloys for aerospace industry," J. Mater. Res. Technol., vol. 27, p.944–983, Nov. 2023.
DOI: 10.1016/j.jmrt.2023.09.274
Google Scholar
[4]
C. C. Flake, Manufacturing Technology for Aerospace Structural Materials. Elsevier, 2011.
Google Scholar
[5]
Z. Huda, N. I. Taib, and T. Zaharinie, "Characterization of 2024-T3: An aerospace aluminum alloy," Mater. Chem. Phys., vol. 113, no. 2, p.515–517, Feb. 2009.
DOI: 10.1016/j.matchemphys.2008.09.050
Google Scholar
[6]
N. Gara, V. Ramachandran, and J. Rengaswamy, "Analytical and FEM analyses of high-speed impact behaviour of Al 2024 Alloy," Aerospace, vol. 8, no. 10, Art. no. 10, Oct. 2021.
DOI: 10.3390/aerospace8100281
Google Scholar
[7]
N. Gara, R. Jayaganthan, and R. Velmurugan, "Failure analysis through fragmentation behaviour of Al 2024 alloy subjected to high strain Rates- experimental and numerical studies," Eng. Fail. Anal., vol. 149, p.107258, Jul. 2023.
DOI: 10.1016/j.engfailanal.2023.107258
Google Scholar
[8]
S. H. Khan, M. Azeem, and R. Ansari, "Impact of double nose blunt projectile on ductile target," in Proceedings of the ACMFMS 2012, Delhi, India: Aligarh Muslim University, 2012, p.1–4.
Google Scholar
[9]
M. Naik et al., "Numerical investigation on effect of different projectile nose shapes on ballistic impact of additively manufactured AlSi10Mg alloy," Front. Mater., vol. 11, Jan. 2024.
DOI: 10.3389/fmats.2024.1330597
Google Scholar
[10]
J. Liu, A. Pi, and F. Huang, "Penetration performance of double-ogive-nose projectiles," Int. J. Impact Eng., vol. 84, p.13–23, Oct. 2015.
DOI: 10.1016/j.ijimpeng.2015.05.003
Google Scholar
[11]
M. K. Dewangan and S. Panigrahi, "Finite element analysis of projectile nose shapes in ballistic perforation of 2D plain woven Kevlar/epoxy composites using multi-scale modelling," J. Ind. Text., vol. 51, no. 3_suppl, pp. 4200S-4230S, Jun. 2022.
DOI: 10.1177/1528083720970168
Google Scholar
[12]
M. A. Iqbal, S. H. Khan, R. Ansari, and N. K. Gupta, "Experimental and numerical studies of double-nosed projectile impact on aluminum plates," Int. J. Impact Eng., vol. 54, p.232–245, Apr. 2013.
DOI: 10.1016/j.ijimpeng.2012.11.007
Google Scholar
[13]
ABAQUS Benchmarks Manual, "Plate penetration by a projectile." Accessed: Feb. 11, 2025. [Online].Available:https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/bmk/default.htm?startat=ch01s03ach35.html
Google Scholar
[14]
S. H. Khan, M. A. Iqbal, R. Ansari, and N. K. Gupta, "Normal impact of conical and blunt nose projectiles on aluminium 1100- H14 Protective Plates," presented at the 4th International Conference on Impact Loading Of Lightweight Structures, 2014.
Google Scholar
[15]
V. Kumar Reddy Sirigiri, V. Yadav Gudiga, U. Shankar Gattu, G. Suneesh, and K. Mohan Buddaraju, "A review on Johnson Cook material model," Mater. Today Proc., vol. 62, p.3450–3456, Jan. 2022.
DOI: 10.1016/j.matpr.2022.04.279
Google Scholar