[1]
Castedo, R., Santos, A., Alañón, A., Reifarth, C., Chiquito, M., López, L., Martínez-Almajano, S., & Pérez-Caldentey, A. (2021). Numerical study and experimental tests on full-scale RC slabs under close-in explosions. Engineering Structures, 231, 111774.
DOI: 10.1016/j.engstruct.2020.111774
Google Scholar
[2]
Dua, A., Braimah, A., & Kumar, M. (2020). Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects. Engineering Structures, 205, 109891.
DOI: 10.1016/j.engstruct.2019.109891
Google Scholar
[3]
Mejía, N., Peralta, R., Tapia, R., Durán, R., & Sarango, A. (2022). Damage assessment of RC columns under the combined effects of contact explosion and axial loads by experimental and numerical investigations. Engineering Structures, 254, 113776.
DOI: 10.1016/j.engstruct.2021.113776
Google Scholar
[4]
Xu, J., Wu, H., Ma, L., & Fang, Q. (2023). Experimental and numerical study on the residual axial capacity of RC bridge piers after contact explosion. Journal of Bridge Engineering, 28(6).
DOI: 10.1061/jbenf2.beeng-5901
Google Scholar
[5]
Yuan, S., Hao H., Zong Z., & Li, J. (2017). A study of RC bridge columns under contact explosion. International Journal of Impact Engineering, 109, 378-390.
DOI: 10.1016/j.ijimpeng.2017.07.017
Google Scholar
[6]
Chen, L., Hu, Y., Ren, H., Xiang, H., Zhai, C., & Fang, Q. (2019). Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder. International Journal of Impact Engineering, 132, 103326.
DOI: 10.1016/j.ijimpeng.2019.103326
Google Scholar
[7]
Kot, C. A. (1977). Spalling of concrete walls under blast load.
Google Scholar
[8]
McVay, M. K. (1988). Spall damage of concrete structures (Final Report). Technical Report SL-88-22.
Google Scholar
[9]
Remennikov, A., Mentus, I., & Uy, B. (2015). Explosive breaching of walls with contact charges: Theory and applications. International Journal of Protective Structures, 6(4), 629-647.
DOI: 10.1260/2041-4196.6.4.629
Google Scholar
[10]
Liu, J., Wu, C., Su, Y., Li, J., Shao, R., Chen, G., & Liu, Z. (2018). Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Engineering Structures, 173, 166-179.
DOI: 10.1016/j.engstruct.2018.06.098
Google Scholar
[11]
Wei, J., Li, J., Wu, C., Liu, Z., & Fang, J. (2021). Impact resistance of ultra-high performance concrete strengthened reinforced concrete beams. International Journal of Impact Engineering, 158, 104023.
DOI: 10.1016/j.ijimpeng.2021.104023
Google Scholar
[12]
Xu, J., Wu, C., Xiang, H., Su, Y., Li, Z., Fang, Q., Hao, H., Liu, Z., Zhang, Y., & Li, J. (2016). Behavior of ultra high-performance fiber reinforced concrete columns subjected to blast loading. Engineering Structures, 118, 97-107.
DOI: 10.1016/j.engstruct.2016.03.048
Google Scholar
[13]
Wang, Z., Wu, H., Fang, Q., & Wu, J. (2020). Experimental study on the residual axial capacity of ultra high performance cementitious composite filled steel tube (UHPCC-FST) column under contact explosion. Thin-Walled Structures, 147, 106515. https://doi.org/10.1016/j.tws. 2019.106515.
DOI: 10.1016/j.tws.2019.106515
Google Scholar
[14]
Su, Q., Wu, H., & Fang, Q. (2022). Calibration of KCC model for UHPC under impact and blast loadings. Cement and Concrete Composites, 127, 104401. https://doi.org/10.1016/ j.cemconcomp.2021.104401.
DOI: 10.1016/j.cemconcomp.2021.104401
Google Scholar
[15]
Thomas, R., & Sorensen, A.D. (2017). Review of strain rate effects for UHPC in tension. Construction and Building Materials, 153, 846-856. https://doi.org/10.1016/j.conbuildmat. 2017.07.168.
DOI: 10.1016/j.conbuildmat.2017.07.168
Google Scholar
[16]
COWPER, G. R., & SYMONDS, P. S. (1957). Strain-hardening and strain-rate effects in the impact loading of cantilever beams.
DOI: 10.21236/ad0144762
Google Scholar