Damage Evaluation of UHPC Column Subjected to Contact Explosion

Article Preview

Abstract:

An explosion generates a supersonic shock wave, causing a significant impact on human lives and properties. The consequences of the rising blast incidents result in massive loss of lives and economic loss due to the collapse of structures. The reinforced concrete columns, a critical structural member highly vulnerable to explosions, must be investigated. Ultra high performance concrete (UHPC) shows high compressive and tensile strength, making it suitable for use in high-strain-rate loading like contact explosion. This study evaluates the damage due to contact explosion on UHPC columns with different lengths to diameters (L/D) ratios of cylindrical-shaped TNT and stirrup types using the finite element (FE) model in LS-DYNA. The model is validated with the experimental data available in the literature. The detonation and propagation of blast waves are simulated by explicitly modeling the explosive and surrounding air using a multi-material Arbitrary Lagrangian-Eulerian (MMALE) formulation. Subsequent displacement control, a quasi-static load is applied to estimate the residual load-carrying capacity. The results indicate that the utilization of UHPC effectively reduces the local damage in the column and retains higher residual capacity than normal-strength concrete (NSC). Furthermore, the L/D ratio of TNT and stirrup configuration play important roles in determining the extent of damage and the residual capacity, highlighting the need to carefully consider these factors in designing columns subjected to contact explosions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-124

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Castedo, R., Santos, A., Alañón, A., Reifarth, C., Chiquito, M., López, L., Martínez-Almajano, S., & Pérez-Caldentey, A. (2021). Numerical study and experimental tests on full-scale RC slabs under close-in explosions. Engineering Structures, 231, 111774.

DOI: 10.1016/j.engstruct.2020.111774

Google Scholar

[2] Dua, A., Braimah, A., & Kumar, M. (2020). Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects. Engineering Structures, 205, 109891.

DOI: 10.1016/j.engstruct.2019.109891

Google Scholar

[3] Mejía, N., Peralta, R., Tapia, R., Durán, R., & Sarango, A. (2022). Damage assessment of RC columns under the combined effects of contact explosion and axial loads by experimental and numerical investigations. Engineering Structures, 254, 113776.

DOI: 10.1016/j.engstruct.2021.113776

Google Scholar

[4] Xu, J., Wu, H., Ma, L., & Fang, Q. (2023). Experimental and numerical study on the residual axial capacity of RC bridge piers after contact explosion. Journal of Bridge Engineering, 28(6).

DOI: 10.1061/jbenf2.beeng-5901

Google Scholar

[5] Yuan, S., Hao H., Zong Z., & Li, J. (2017). A study of RC bridge columns under contact explosion. International Journal of Impact Engineering, 109, 378-390.

DOI: 10.1016/j.ijimpeng.2017.07.017

Google Scholar

[6] Chen, L., Hu, Y., Ren, H., Xiang, H., Zhai, C., & Fang, Q. (2019). Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder. International Journal of Impact Engineering, 132, 103326.

DOI: 10.1016/j.ijimpeng.2019.103326

Google Scholar

[7] Kot, C. A. (1977). Spalling of concrete walls under blast load.

Google Scholar

[8] McVay, M. K. (1988). Spall damage of concrete structures (Final Report). Technical Report SL-88-22.

Google Scholar

[9] Remennikov, A., Mentus, I., & Uy, B. (2015). Explosive breaching of walls with contact charges: Theory and applications. International Journal of Protective Structures, 6(4), 629-647.

DOI: 10.1260/2041-4196.6.4.629

Google Scholar

[10] Liu, J., Wu, C., Su, Y., Li, J., Shao, R., Chen, G., & Liu, Z. (2018). Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Engineering Structures, 173, 166-179.

DOI: 10.1016/j.engstruct.2018.06.098

Google Scholar

[11] Wei, J., Li, J., Wu, C., Liu, Z., & Fang, J. (2021). Impact resistance of ultra-high performance concrete strengthened reinforced concrete beams. International Journal of Impact Engineering, 158, 104023.

DOI: 10.1016/j.ijimpeng.2021.104023

Google Scholar

[12] Xu, J., Wu, C., Xiang, H., Su, Y., Li, Z., Fang, Q., Hao, H., Liu, Z., Zhang, Y., & Li, J. (2016). Behavior of ultra high-performance fiber reinforced concrete columns subjected to blast loading. Engineering Structures, 118, 97-107.

DOI: 10.1016/j.engstruct.2016.03.048

Google Scholar

[13] Wang, Z., Wu, H., Fang, Q., & Wu, J. (2020). Experimental study on the residual axial capacity of ultra high performance cementitious composite filled steel tube (UHPCC-FST) column under contact explosion. Thin-Walled Structures, 147, 106515. https://doi.org/10.1016/j.tws. 2019.106515.

DOI: 10.1016/j.tws.2019.106515

Google Scholar

[14] Su, Q., Wu, H., & Fang, Q. (2022). Calibration of KCC model for UHPC under impact and blast loadings. Cement and Concrete Composites, 127, 104401. https://doi.org/10.1016/ j.cemconcomp.2021.104401.

DOI: 10.1016/j.cemconcomp.2021.104401

Google Scholar

[15] Thomas, R., & Sorensen, A.D. (2017). Review of strain rate effects for UHPC in tension. Construction and Building Materials, 153, 846-856. https://doi.org/10.1016/j.conbuildmat. 2017.07.168.

DOI: 10.1016/j.conbuildmat.2017.07.168

Google Scholar

[16] COWPER, G. R., & SYMONDS, P. S. (1957). Strain-hardening and strain-rate effects in the impact loading of cantilever beams.

DOI: 10.21236/ad0144762

Google Scholar