[1]
Matsagar V.A., Comparative performance of composite sandwich panels and non-composite panels under blast loading. Mater. Struct., 49(1), (2016), 611-629.
DOI: 10.1617/s11527-015-0523-8
Google Scholar
[2]
Chandra S., Saini K., Matsagar V., Marburg S., Reliability assessment of laminated composite plates under impulsive loads, 5th National Conference on Reliability and Safety (NCRS-2022), 1(2022) 0-12.
Google Scholar
[3]
Goel M.D., Matsagar V.A., Gupta A.K., Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam. Int. J. Impact Eng., 77, (2015) 134-146.
DOI: 10.1016/j.ijimpeng.2014.11.017
Google Scholar
[4]
Chordiya Y.M., Goel M.D., Matsagar V.A., Sandwich panels with honeycomb and foam cores subjected to blast and impact load. A Revisit to Past Work. Arch. Comput. Methods Eng., (2022), 1-27.
DOI: 10.1007/s11831-022-09869-7
Google Scholar
[5]
Saini K., Matsagar V.A., Blast performance of polyurea coated modular structure composed of fiber-reinforced polymer and foam sandwich panels, Int. J. Prot., SAGE, (2024a), 20414196241269381.
DOI: 10.1177/20414196241269381
Google Scholar
[6]
Sharma H., Singh S.P., Matsagar V., Modular design of industrial control room with steel and aluminum foam materials under internal or external blast loads. In 77th RILEM Annual Week and the 1st Interdisciplinary Symposium on Smart and Sustainable Infrastructures (ISSSI 2023), (2023), Vancouver, BC, Canada.
DOI: 10.1007/978-3-031-53389-1_89
Google Scholar
[7]
Zhu F., Lu G., Ruan D., Wang Z., Plastic deformation, failure, and energy absorption of sandwich structures with metallic cellular cores, Int. J. Prot., 1(4), (2010), 507-541.
DOI: 10.1260/2041-4196.1.4.507
Google Scholar
[8]
Goel M.D., Matsagar V.A., Gupta A.K., Dynamic response of stiffened plates under air blast Int. J. Prot., (1), (2011), 139-155.
DOI: 10.1260/2041-4196.2.1.139
Google Scholar
[9]
Zhang R., Huang W., Lyu P., Yan S., Wang X., Ju J., Polyurea for blast and impact protection: A review, Polym. J., 14(13), (2022), 2670.
DOI: 10.3390/polym14132670
Google Scholar
[10]
Saini K., Datta V., Matsagar V. Glass fiber-reinforced polymer and foam sandwich composite panel with polyurea under blast impulse. In: The 6th International Conference on Protective Structures (ICPS6). Alabama, USA, May 14 - May 17, 2023.
DOI: 10.1177/20414196241269381
Google Scholar
[11]
Davidson J.S., Porter J.R., Dinan R.J., Hammons M.I., Connell J.D., Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil., 18(2), (2004), 100-106.
DOI: 10.1061/(asce)0887-3828(2004)18:2(100)
Google Scholar
[12]
Davidson J.S., Fisher J.W., Hammons M.I., Porter J.R., Dinan R.J., Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast. J. Struct. Eng., 131(8), (2005), 1194-1205.
DOI: 10.1061/(asce)0733-9445(2005)131:8(1194)
Google Scholar
[13]
Saini K., Matsagar V.A., Blast performance of ultra-high-performance concrete with polyurea and foamed concrete coatings. American Concrete Institute (ACI) Special Publication on Developments, Applications, and Case Studies in UHPC for Bridges and Structures 363, (2024b), 118-136.
DOI: 10.14359/51742110
Google Scholar
[14]
Johnson C.F., Slawson T.R., Cummins T.K., Davis J.L., Concrete masonry unit walls retrofitted with elastomeric systems for blast loads. In Proceedings of the 24th Army Science Conference, (2004).
Google Scholar
[15]
Baylot J.T., Bullock B., Slawson T.R., Woodson S.C., Blast response of lightly attached concrete masonry unit walls. J. Struct. Eng., 131(8), (2005), 1186-1193.
DOI: 10.1061/(asce)0733-9445(2005)131:8(1186)
Google Scholar
[16]
Amini M.R., Isaacs J.B., Nemat-Nasser S., Experimental investigation of response of monolithic and bilayer plates to impulsive loads. Int. J. Impact Eng., 37(1), (2010), 82-89.
DOI: 10.1016/j.ijimpeng.2009.04.002
Google Scholar
[17]
Ackland K., Anderson C., Ngo T.D., Deformation of polyurea-coated steel plates under localized blast loading, Int. J. Impact Eng., 51, (2013), 13-22.
DOI: 10.1016/j.ijimpeng.2012.08.005
Google Scholar
[18]
Li H., Wang D., Zhang H., Wang X., Qin Z., Guan Z., Optimal design of vibro-impact resistant fiber reinforced composite plates with polyurea coating. Compos. Struct., 292, (2022), 115680.
DOI: 10.1016/j.compstruct.2022.115680
Google Scholar
[19]
Liu Q., Guo B., Chen P., Zhai H., Guo Y., Tang S., Experimental investigation blast resistance of CFRP/polyurea composite plates under blast loading. Thin-Walled Struct., 181, (2022), 110149.
DOI: 10.1016/j.tws.2022.110149
Google Scholar
[20]
Wu G., Wang X., Ji C., Liu Q., Xie X., Zhao C., Liu P., Damage response of polyurea-coated steel plates under combined blast and fragments loading. J. Constr. Steel Res., 190, (2022), 107126.
DOI: 10.1016/j.jcsr.2021.107126
Google Scholar
[21]
Qu Y.G., Wu H., Xu Z.Y., Liu X., Dong Z.F., Fang Q., Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations, Nucl. Eng. Technol., 52(2), (2020), 397-416.
DOI: 10.1016/j.net.2019.07.015
Google Scholar
[22]
Bahei-El-Din Y.A., Dvorak G.J., Behavior of sandwich plates reinforced with polyurethane/polyurea interlayers under blast loads, J. Sandw. Struct. Mater., 9(3) (2007) 261-281.
DOI: 10.1177/1099636207066313
Google Scholar
[23]
Zhang D, Yao S, Lu F, Song J, Ding Y (2019) Dynamic response and damage analysis of steel box wall under internal blast loading. Adv Mech Eng II(I):1-11.
DOI: 10.1177/1687814018822601
Google Scholar