[1]
Ying Wang, Yezhi Qin, Xiongliang Yao, A combined experimental and numerical investigation on damage characteristics of ice sheet subjected to underwater explosion load. Applied Ocean Research 103 (2020) 102347.
DOI: 10.1016/j.apor.2020.102347
Google Scholar
[2]
Hao Jiang, Hao Wang, Valerie Scott, Bo Li, Numerical analysis of oblique hypervelocity impact damage to space structural materials by ice particles in cryogenic environment. Acta Astronautica. 195 (2020) 392–404.
DOI: 10.1016/j.actaastro.2022.02.029
Google Scholar
[3]
A. Combescure, Y. Cyuzel-Marmot, J. Fabie, Experimental study of high-velocity impact and fracture of ice. Int. J. of Solids and Structures. 48 (2011) 2779–2790.
DOI: 10.1016/j.ijsolstr.2011.05.028
Google Scholar
[4]
E.I. Kraus, A. Yu. Melnikov, V.M. Fomin, I.I. Shabalin, Penetration of steel projectiles through finite thickness ice targets. Journal of Applied Mechanics and Technical Physics, (60)3 (2019) 146-153.
DOI: 10.1134/s0021894419030155
Google Scholar
[5]
E. Schulson and P. Duval, Creep and Fracture of Ice, Cambridge University Press, 2009.
Google Scholar
[6]
Physics and mechanics of ice, Symposium of Copenhagen, 1983 Editor P. Tryde, Technical University of Denmark.
Google Scholar
[7]
V. Bogorodsky and V. Gavrilo, Led. Fizicheskaya Svoystva Sovremennyye Metody glyatsiologii Gidrometeoizdat Press, Leningrad: 1980.
Google Scholar
[8]
E. Klaseboer, K.C. Hung, C. Wang, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure J. Fluid Mech, 537 (2005) 387–413.
DOI: 10.1017/s0022112005005306
Google Scholar
[9]
M. Orlov, Investigation of the process of explosive loading of freshwater ice, Thermal Science. 23(2) (2009) 561-567.
DOI: 10.2298/tsci19s2561o
Google Scholar
[10]
K.S. Carney et al. A phenomenological high strain rate model with failure for ice, Int. J. of Solids and Structures. 43 (2006) 7820–7839
DOI: 10.1016/j.ijsolstr.2006.04.005
Google Scholar
[11]
Yiqiang Han, Jared Soltis, Jose Palacios, Engine inlet guide vane ice impact fragmentation, AIAA Journal 56(9) (2020) 3680-3690.
DOI: 10.2514/1.j056648
Google Scholar
[12]
Laurence A. Coles, Anish Roy, Vadim V. Silberschmidt, Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part II – Numerical modelling. Engineering Fracture Mechanics, https://doi.org/10.1016/j.engfracmech.2018.12.030 902019
DOI: 10.1016/j.engfracmech.2018.12.030
Google Scholar
[13]
Pernas-Sanchez J, Pedroche D, Varas D, Lopez-Puente J and Zaera R (2012) Numerical modeling of ice behavior under high velocity impacts. International Journal of Solids and Structures, 49(14): (2019) 1919–1927.
DOI: 10.1016/j.ijsolstr.2012.03.038
Google Scholar
[14]
Yu. N. Orlova "Kompleksnoye teoreticheskoye i eksperimental'noye issledovaniye povedeniya l'da pri udarnykh i vzryvnykh nagruzkakh", Ph.D. thesis, 2014, Tomsk State University, (in Russ.)
Google Scholar
[15]
M. Yu. Orlov and Yu. N. Orlova, Combined theoretical and experimental study of ice behavior under shock and explosive Loads. SpringerBriefs in Continuum Mechanics, 2022.
DOI: 10.1007/978-3-030-97634-7
Google Scholar
[16]
Explosion Physics, 3rd ed, edited by L. Orlenko Moscow. FizMatLit, (2004)
Google Scholar
[17]
D.B. Larson D B, Shock wave studies of ice under uniaxial strain conditions, Int. J. of Glaciology 30(105) (1984) 235-240.
DOI: 10.3189/s0022143000005992
Google Scholar
[18]
V. Tolkachev and Trushkov V [Matematicheskoye modelirovaniye sdvigovykh i otkol'nykh razrusheniy pri udarnom vzaimodeystvii uprugoplasticheskikh tel] Russian Journal of Physical Chemistry B: Focus on Physics. 12 (1993) 170-175. (in Russ.)
Google Scholar
[19]
G Johnson, T Holmquist, C Gerlach Strain-rate effects associated with the HJC concrete model // EPJ Web of Conference, 183, (2018) 01008
DOI: 10.1051/epjconf/201818301008
Google Scholar
[20]
Teoreticheskiye i eksperimental'nyye issledovaniya vysokoskorostnogo vzaimodeystviya tel, edited by A. Gerasimov Tomsk, Tomsk State University Press, 2007 (in Russ.)
Google Scholar
[21]
M. Orlov, V. Glazyrin and Yu. N. Orlov, Ice fracture at shock and impact loading. Numerical modelling and experiment, Works of Tomsk State University. Physics and Mathematical Series. 303: (2019) 0329 -334 (in Russ.)
Google Scholar
[22]
Jesse A. Sherburn, Mark F. Horstemeyer, Hydrodynamic modeling of impact craters in ice. International Journal of Impact Engineering, 37 (2010) 27–36.
DOI: 10.1016/j.ijimpeng.2009.07.001
Google Scholar