[1]
General Services Administration, Disproportionate Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, Technical Report, General Services Administration, Washington, DC, 2003.
Google Scholar
[2]
Department of Defense, UFC 4-023-03: Design of Buildings to Resist Disproportionate Collapse, Technical Report, United Facilities Criteria, Washington, DC, 2013.
Google Scholar
[3]
Jawdhari, A., Orton, S., Izzuddin, B., & Cormie, D. (2018, April). Dynamic debris loading in flat plate and steel framed buildings. In Structures Conference 2018 (pp.299-310). Reston, VA: American Society of Civil Engineers.
DOI: 10.1061/9780784481349.029
Google Scholar
[4]
Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061.
DOI: 10.1016/j.engstruct.2019.110061
Google Scholar
[5]
Kiakojouri, F., & De Biagi, V. (2024). Catenary mechanism in steel columns under extreme lateral loading: A basis for building progressive collapse analysis. Developments in the Built Environment, 20, 100556.
DOI: 10.1016/j.dibe.2024.100556
Google Scholar
[6]
Kiakojouri, F., Zeinali, E., Adam, J. M., & De Biagi, V. (2023). Experimental studies on the progressive collapse of building structures: A review and discussion on dynamic column removal techniques. Structures, 57, 105059.
DOI: 10.1016/j.istruc.2023.105059
Google Scholar
[7]
Kiakojouri, F., De Biagi, V., Marchelli, M., & Chiaia, B. (2024). A conceptual note on the definition of initial failure in progressive collapse scenarios. Structures, 60, 105921.
DOI: 10.1016/j.istruc.2024.105921
Google Scholar
[8]
Li, H., Chen, W., & Hao, H. (2019). Influence of drop weight geometry and interlayer on impact behavior of RC beams. International Journal of Impact Engineering, 131, 222-237.
DOI: 10.1016/j.ijimpeng.2019.04.028
Google Scholar
[9]
Sielicki, P. W., Ślosarczyk, A., & Szulc, D. (2019). Concrete slab fragmentation after bullet impact: An experimental study. International journal of protective structures, 10(3), 380-389.
DOI: 10.1177/2041419619854764
Google Scholar
[10]
Ning, J., Meng, F., Ma, T., & Xu, X. (2020). Failure analysis of reinforced concrete slab under impact loading using a novel numerical method. International Journal of Impact Engineering, 144, 103647.
DOI: 10.1016/j.ijimpeng.2020.103647
Google Scholar
[11]
Zhang, C., Gholipour, G., & Mousavi, A. A. (2021). State-of-the-art review on responses of RC structures subjected to lateral impact loads. Archives of Computational Methods in Engineering, 28(4), 2477-2507.
DOI: 10.1007/s11831-020-09467-5
Google Scholar
[12]
Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414.
DOI: 10.1016/j.engstruct.2020.110414
Google Scholar
[13]
Zineddin, M., & Krauthammer, T. (2007). Dynamic response and behavior of reinforced concrete slabs under impact loading. International Journal of Impact Engineering, 34(9), 1517-1534.
DOI: 10.1016/j.ijimpeng.2006.10.012
Google Scholar
[14]
Senthil, K., Kubba, Z., Sharma, R., & Thakur, A. (2021, March). Experimental and numerical investigation on reinforced concrete slab under low velocity impact loading. IOP conference series: materials science and engineering, Vol. 1090, No. 1, p.012090. IOP Publishing.
DOI: 10.1088/1757-899x/1090/1/012090
Google Scholar
[15]
Zhan, T., Wang, Z., & Ning, J. (2015). Failure behaviors of reinforced concrete beams subjected to high impact loading. Engineering Failure Analysis, 56, 233-243.
DOI: 10.1016/j.engfailanal.2015.02.006
Google Scholar
[16]
De Biagi, V., & Marchelli, M. (2025). An experimental setup to study the collision force between brittle impacting bodies. International Journal of Impact Engineering, 196, 105160.
DOI: 10.1016/j.ijimpeng.2024.105160
Google Scholar
[17]
Zeinali, E., Kiakojouri, F., & De Biagi, V. (2025). Response of reinforced concrete beams subjected to debris impact: A simplified model. Engineering Failure Analysis, 178, 109661.
DOI: 10.1016/j.engfailanal.2025.109661
Google Scholar
[18]
PCB Piezotronics, "Model 203B ICP® Quartz Force Ring," [Online]. Available: https://www.pcb.com/products?m=203b.
Google Scholar
[19]
Photron. "FASTCAM Nova S12 High-Speed Camera." https://photron.com/fastcam-nova-s/.
Google Scholar
[20]
Zeiss. "Milvus 1.4/85." https://www.zeiss.com/consumer-products/us/photography/milvus/ milvus-1485.html.
Google Scholar
[21]
Hibbeler, R. C. (2004). Engineering mechanics: dynamics. Pearson Educación.
Google Scholar