[1]
Hind H. A, Nareen H. O, Adil Sh. J. Optimization of fused deposition modeling parameters for polyethylene terephthalate glycol flexural strength and dimensional accuracy. Advances in Science and Technology Research Journal, 2025, 19(4), 50–64.
DOI: 10.12913/22998624/200088
Google Scholar
[2]
Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Composites Part B: Engineering. 2018 Jun 15; 143:172-96.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[3]
Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing. 2018 Aug 1; 69:157-66.
DOI: 10.1016/j.polymertesting.2018.05.020
Google Scholar
[4]
Lanzotti A, Grasso M, Staiano G, Martorelli M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal. 2015 Aug 17;21(5):604-17.
DOI: 10.1108/rpj-09-2014-0135
Google Scholar
[5]
Tymrak BM, Kreiger M, Pearce JM. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design. 2014 Jun 1;58:242-6.
DOI: 10.1016/j.matdes.2014.02.038
Google Scholar
[6]
Chadha A, Ul Haq MI, Raina A, Singh RR, Penumarti NB, Bishnoi MS. Effect of fused deposition modeling process parameters on mechanical properties of 3D printed parts. World Journal of Engineering. 2019 Aug 20;16(4):550-9.
DOI: 10.1108/wje-09-2018-0329
Google Scholar
[7]
Hmeidat NS, Brown B, Jia X, Vermaak N, Compton B. Effects of infill patterns on the strength and stiffness of 3D printed topologically optimized geometries. Rapid Prototyping Journal. 2021 Sep 2;27(8):1467-79.
DOI: 10.1108/rpj-11-2019-0290
Google Scholar
[8]
Dizon JR, Espera Jr AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Additive manufacturing. 2018 Mar 1; 20:44-67.
DOI: 10.1016/j.addma.2017.12.002
Google Scholar
[9]
Ammar M. S, Adil Sh. J, Mohammed S. J. Layer adhesion investigation of three dimension printed parts by controlling the environment temperature. Advances in Science and Technology Research Journal, 2025, 19(3), 74–83.
DOI: 10.12913/22998624/197333
Google Scholar
[10]
Dave HK, Patel BH, Rajpurohit SR, Prajapati AR, Nedelcu D. Effect of multi-infill patterns on tensile behavior of FDM printed parts. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2021 Jan;43(1):23.
DOI: 10.1007/s40430-020-02742-3
Google Scholar
[11]
Bates SR, Farrow IR, Trask RS. 3D printed polyurethane honeycombs for repeated tailored energy absorption. Materials & Design. 2016 Dec 15; 112:172-83.
DOI: 10.1016/j.matdes.2016.08.062
Google Scholar
[12]
Tarlochan F. Sandwich structures for energy absorption applications: A review. Materials. 2021 Aug 22;14(16):4731.
DOI: 10.3390/ma14164731
Google Scholar
[13]
Li J, Zhang Y, Kang Y, Zhang F. Characterization of energy absorption for side hierarchical structures under axial and oblique loading conditions. Thin-Walled Structures. 2021 Aug 1; 165:107999.
DOI: 10.1016/j.tws.2021.107999
Google Scholar
[14]
Yousefi A, Jolaiy S, Lalegani Dezaki M, Zolfagharian A, Serjouei A, Bodaghi M. 3D‐Printed Soft and Hard Meta‐Structures with Supreme Energy Absorption and Dissipation Capacities in Cyclic Loading Conditions. Advanced Engineering Materials. 2023 Feb;25(4):2201189.
DOI: 10.1002/adem.202201189
Google Scholar
[15]
Menegozzo M, Cecchini A, Just-Agosto FA, Serrano Acevedo D, Flores Velez OJ, Acevedo-Figueroa I, De Jesús Ruiz J. A 3D-Printed Honeycomb Cell Geometry Design with Enhanced Energy Absorption under Axial and Lateral Quasi-Static Compression Loads. Applied Mechanics. 2022 Mar 14;3(1):296-312.
DOI: 10.3390/applmech3010019
Google Scholar
[16]
Estrada Q, Zubrzycki J, Reynoso-Jardón E, Szwedowicz D, Rodriguez-Mendez A, Marchewka M, Vergara-Vazquez J, Bastarrachea A, Silva JM. Numerical Study of the Energy Absorption Performance of 3D Printed Sandwich Structures. Advances in Science and Technology. Research Journal. 2023;17(5).
DOI: 10.12913/22998624/171496
Google Scholar
[17]
Weber D, Srinivas Sundarram S. 3D‐printed and foamed triply periodic minimal surface lattice structures for energy absorption applications. Polymer Engineering & Science. 2023 Apr;63(4):1133-45.
DOI: 10.1002/pen.26270
Google Scholar
[18]
Hussein, Marwan B., Ali M. Mustafa, and Makarim H. Abdulkareem. "A Comparative Study on Dip Coating and Corrosion Behavior of Ti-13Zr-13Nb and Commercially Pure Titanium Alloys Coated with YSZ by Taguchi Design." Salud, Ciencia y Tecnología-Serie de Conferencias 3 (2024): 847.
DOI: 10.56294/sctconf2024847
Google Scholar
[19]
Ahmed AM, Mahdi E, Oosterhuis K, Dean A, Cabibihan JJ. Mechanical and energy absorption properties of 3D-printed honeycomb structures with Voronoi tessellations. Frontiers in Mechanical Engineering. 2023 Jun 7; 9:1204893.
DOI: 10.3389/fmech.2023.1204893
Google Scholar
[20]
Hamood, A. F., Hussein Mousa Habeeb, Basheer A. Abdulhussein, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, T. S. Gaaz, Lina A. Hameed, and A. A. A. Alamiery. "Weight loss, electrochemical measurements and DFT studies on corrosion inhibition by 7-mercapto-4-methylcoumarin." Results in Engineering 23 (2024): 102677.
DOI: 10.1016/j.rineng.2024.102677
Google Scholar
[21]
Yi X, Hu L, Li Q, Tang Y. Axial Crushing and Energy Absorption Integrated Design of Modular Filled Double-Hat Beam Composite Structures. Materials. 2024 Aug 30;17(17):4302.
DOI: 10.3390/ma17174302
Google Scholar
[22]
Xiao Y, Long H, Wang Y, Hu H, Liu Y, Wu Q. Structural design and analysis of impact energy absorption characteristics for pre-folded external double-layer biomimetic multi-cell thin-walled tubes. Mechanics of Advanced Materials and Structures. 2024 Feb 28:1-2.
DOI: 10.1080/15376494.2024.2323680
Google Scholar
[23]
El-Halim A, Mahmoud F, Awd Allah MM, Abbas MA, Mousa AA, Mahmoud SF, El-baky A, Marwa A. Energy absorption performance of 3D-printed windowed structures under quasi-static axial loading Condition. Fibers and Polymers. 2024 Dec 9:1-9.
DOI: 10.1007/s12221-024-00798-9
Google Scholar
[24]
Askari GH, Dar UA, Abid M, Nutkani MB, Pasha RA, Jamil A. Energy absorption and compression behavior of polymeric 3D printed lattice structures-Experimental and numerical study. In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) 2021 Jan 12 (pp.198-203). IEEE.
DOI: 10.1109/ibcast51254.2021.9393216
Google Scholar
[25]
Zhou X, Qu C, Luo Y, Heise R, Bao G. Compression behavior and impact energy absorption characteristics of 3D printed polymer lattices and their hybrid sandwich structures. Journal of Materials Engineering and Performance. 2021 Dec; 30:8763-70.
DOI: 10.1007/s11665-021-06242-w
Google Scholar