[1]
Teng, J. G., Yu, T., Wong, Y. L., & Dong, S. L. (2007). Hybrid FRP–concrete–steel tubular columns: Concept and behavior. Construction and Building Materials, 21(4), 846-854.
DOI: 10.1016/j.conbuildmat.2006.06.017
Google Scholar
[2]
Qian, J. R., & Liu, M. X. (2006). Experiment of FRP-concrete-steel double-skin tubular long columns under axial compressive load. Concrete(09), 31-34. (in Chinese).
Google Scholar
[3]
Liu, M. X., & Qian, J. R. (2007). Moment-curvature relationships of FRP-concrete-steel double-skin tublar members. Journal of Tsinghua University(Science and Technology)(12), 2105-2110. (in Chinese).
Google Scholar
[4]
Qian, J. R., & Liu, M. X. (2008). Experimental investigation of FRP-concrete-steel double-skin tubular stubs under axial compressive loading. Journal of Building Structures(02), 104-113. (in Chinese).
Google Scholar
[5]
Qian, J. R., & Liu, M. X. (2008). Test of seismic behavior of FRP-concrete-steel double-skin tubular columns. China Civil Engineering Journa(03), 29-36. (in Chinese).
Google Scholar
[6]
Wong, Y. L., Yu, T., Teng, J. G., & Dong, S. L. (2008). Behavior of FRP-confined concrete in annular section columns. Composites Part B: Engineering, 39(3), 451-466.
DOI: 10.1016/j.compositesb.2007.04.001
Google Scholar
[7]
Yu, T., Teng, J. G., & Wong, Y. L. (2010). Stress-strain behavior of concrete in hybrid frp-concrete-steel double-skin tubular columns. Journal of Structural Engineering, 136(4), 379-389.
DOI: 10.1061/(asce)st.1943-541x.0000121
Google Scholar
[8]
Yu, T., & Teng, J. G. (2013). Behavior of Hybrid FRP-Concrete-Steel Double-Skin Tubular Columns with a Square Outer Tube and a Circular Inner Tube Subjected to Axial Compression. Journal of Composites for Construction, 17(2), 271-279.
DOI: 10.1061/(asce)cc.1943-5614.0000331
Google Scholar
[9]
Zhang, B., Teng, J. G., & Yu, T. (2015). Experimental behavior of hybrid FRP–concrete–steel double-skin tubular columns under combined axial compression and cyclic lateral loading. Engineering Structures, 99, 214-231.
DOI: 10.1016/j.engstruct.2015.05.002
Google Scholar
[10]
Chandramouli, P., Jayaseelan, R., & Pandulu, G. (2022). Axial compression behaviour of hybrid composite FRP–concrete–steel double-skin tubular columns with various fibre orientations. Case Studies in Construction Materials, 17, e01326.
DOI: 10.1016/j.cscm.2022.e01326
Google Scholar
[11]
Jiang, T., Lin, G., & Xie, P. (2023). Behavior of large-scale hybrid FRP-concrete-steel double-skin tubular columns subjected to eccentric compression. Engineering Structures, 275, 115258.
DOI: 10.1016/j.engstruct.2022.115258
Google Scholar
[12]
Xie, P., Jiang, T., Lin, G., Li, L. J., & Guo, Y. C. (2023). Hybrid FRP-concrete-steel double-skin tubular columns of varying slenderness ratios under eccentric compression. Journal of Constructional Steel Research, 201, 107741.
DOI: 10.1016/j.jcsr.2022.107741
Google Scholar
[13]
Bhat, P., & Jamatia, R. (2024). Analysis oriented model for hybrid filament wound FRP-concrete-steel double skin tubular columns (DSTC) under axial compression. Journal of Constructional Steel Research, 223, 109008.
DOI: 10.1016/j.jcsr.2024.109008
Google Scholar
[14]
Bai, S. C., Peng, K. D., Bai, Y. L., & Ma, J. X. (2025). Seismic behavior of full-scale PEN FRP-concrete-steel double skin tubular columns. Structures, 73, 108345.
DOI: 10.1016/j.istruc.2025.108345
Google Scholar
[15]
Deng, R., Zhang, Z., & Xiang, Y. (2025). Load-carrying mechanism of thin-walled hybrid double-skin tubular columns subjected to axial compression. Engineering Structures, 326, 119557.
DOI: 10.1016/j.engstruct.2024.119557
Google Scholar
[16]
Zhou, Y. W., Liu, X. M., Xing, F., Li, D. W., Wang, Y. C., & Sui, L. L. (2017). Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete. Construction and Building Materials, 139, 52-63.
DOI: 10.1016/j.conbuildmat.2016.12.154
Google Scholar
[17]
Zhang, N., Zhao, Z. W., & Zheng, C. Y. (2022). Compression behavior of GFRP–coal gangue concrete–steel tubular columns. International Journal of Pressure Vessels and Piping, 197, 104650.
DOI: 10.1016/j.ijpvp.2022.104650
Google Scholar
[18]
Zakir, M., Sofi, F. A., & Naqash, J. A. (2021). Compressive testing and finite element analysis-based confined concrete model for stiffened square FRP-concrete-steel double-skin tubular columns. Journal of Building Engineering, 44, 103267.
DOI: 10.1016/j.jobe.2021.103267
Google Scholar
[19]
Zakir, M., Sofi, F. A., & Naqash, J. A. (2021). Experimentally verified behavior and confinement model for concrete in circular stiffened FRP-concrete-steel double-skin tubular columns. Structures, 33, 1144-1157.
DOI: 10.1016/j.istruc.2021.05.010
Google Scholar
[20]
Zakir, M., & Sofi, F. A. (2022). Experimental and nonlinear FE simulation-based compressive behavior of stiffened FRP-concrete-steel double-skin tubular columns with square outer and circular inner tubes. Engineering Structures, 260, 114237.
DOI: 10.1016/j.engstruct.2022.114237
Google Scholar
[21]
Wang, W. Q., Wang, Z. B., Li, M. H., Xiong, Z. L., Chen, D., & Wu, C. Q. (2025). Close-range blast behavior of hybrid FRP-concrete-steel double-skin tubular member. Thin-Walled Structures, 113022.
DOI: 10.1016/j.tws.2025.113022
Google Scholar
[22]
Gan, L., Chen, L., Zong, Z. H., & Qian, H. M. (2025). Definition of scaled distance of close-in explosion and blast load calculation model. Explosion and Shock Waves, 41(6), 130-141. (in Chinese)
Google Scholar
[23]
China, S. A. o. (2010). Metallic materials - Tensile testing - Part 1 : Method of test at room temperature. In (Vol. GB/T 228.1-2010). Beijing, China: Standards Press of China. (in Chinese)
Google Scholar
[24]
China, S. A. o. (2019). Standard for Test Methods of Mechanical Properties of Ordinary Concrete. In (Vol. GB/T 50081-2019). Beijing, China: Standards Press of China. (in Chinese)
Google Scholar
[25]
International, A. (2008). Standard Test Method for Apparent Tensile Strength of Ring or Tubular Plastics and Reinforced Plastics. In (Vol. ASTM D2290-08). West Conshohocken, PA: ASTM International.
Google Scholar