Integrating Vernacular Wisdom and Contemporary Performance in Mediterranean Residential Architecture: Santarém, Portugal Case Study

Article Preview

Abstract:

This study comparatively analyzed residential architecture in Santarém, Portugal, as a representative case for the broader inland Mediterranean context, evaluating vernacular, contemporary, and hybrid typologies in terms of thermal performance and cost-effectiveness. Traditional buildings, characteristic of Mediterranean climates, relied on high thermal mass and cross-ventilation for summer cooling but exhibited poor envelope insulation (average U≈1.4 W/m²K), leading to elevated winter heating needs (≈150 kWh/m²·year) and non-compliance with Nearly Zero-Energy Building (NZEB) standards. By contrast, contemporary NZEB-compliant solutions, optimized for Mediterranean conditions, employed high-performance insulation and mechanical ventilation with heat recovery (average U≈0.13 W/m²K; ~35 kWh/m²·year), offering enhanced comfort but requiring a significant initial investment (+75%) and long payback periods (~46 years). The hybrid approach, integrating Mediterranean vernacular strategies with targeted technological upgrades, presented the most effective compromise. It reduced energy consumption by ~50% (78 kWh/m²·year, net 39 kWh/m²·year with renewables), involved a moderate additional cost (~28%), and shortened the payback period to ~33 years. This typology demonstrates a feasible and regionally adaptable model for energy-efficient housing in Mediterranean settings, aligning climate-responsive design with current energy performance requirements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-54

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Saifudeen, M. Mani, Adaptation of buildings to climate change: an overview, Front. Built Environ. 10 (2024).

DOI: 10.3389/fbuil.2024.1327747

Google Scholar

[2] European Commission, Energy Performance of Buildings Directive, (2025). https://energy.ec.europa.eu/topics/energy-efficiency/energy-performance-buildings/energy-performance-buildings-directive_en (accessed July 28, 2025).

DOI: 10.55092/rse20260001

Google Scholar

[3] EEA, Cooling buildings sustainably in Europe: exploring the links between climate change mitigation and adaptation, and their social impacts, European Environment Agency (2023). https://www.eea.europa.eu/publications/cooling-buildings-sustainably-in-europe/cooling-buildings-sustainably-in-europe (accessed July 9, 2025).

DOI: 10.1163/9789004322714_cclc_2022-0190-0659

Google Scholar

[4] J. Fernandes, C. Pimenta, R. Mateus, S.M. Silva, L. Bragança, Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants' Perception, Buildings 5 (2015) 1242–1264.

DOI: 10.3390/buildings5041242

Google Scholar

[5] Buildings and Cities, Climate Resilient Vernacular Architecture in Turkey, Buildings and Cities (2024). https://www.buildingsandcities.org/insights/commentaries/climate-resilient-vernacular-architecture.html (accessed July 9, 2025).

DOI: 10.1007/978-981-96-1116-4_1

Google Scholar

[6] J. Fernandes, R. Mateus, Energy efficiency principles in Portuguese vernacular architecture, 2012.

Google Scholar

[7] ISO, ISO 52016-1, 2017. https://www.iso.org/obp/ui/en/#iso:std:iso:52016:-1:ed-1:v1:en (accessed July 9, 2025).

DOI: 10.31030/3340133

Google Scholar

[8] PHPP & DesignPH, International Passive House Association, (2021). https://passivehouse-international.org/index.php?page_id=188 (accessed July 9, 2025).

Google Scholar

[9] M. Mangeli, F. Aram, R. Abouei, Energy consumption and thermal comfort of rock-cut and modern buildings, Heliyon 10 (2024) e34217.

DOI: 10.1016/j.heliyon.2024.e34217

Google Scholar

[10] M.P. Sáez-Pérez, L.M. García Ruiz, F. Tajani, Assessment of the Thermal Properties of Buildings in Eastern Almería (Spain) during the Summer in a Mediterranean Climate, Sustainability 16 (2024) 746.

DOI: 10.3390/su16020746

Google Scholar

[11] C. Tribuiani, L. Tarabelli, S. Summa, C. Di Perna, Thermal Performance of a Massive Wall in the Mediterranean Climate: Experimental and Analytical Research, Applied Sciences 10 (2020) 4611.

DOI: 10.3390/app10134611

Google Scholar

[12] S. Mazzetto, Comparative Life Cycle Assessment of Traditional and Modern Materials in Heritage Building Restoration: A Case Study from Ushaiger Village, Sustainability 17 (2025) 25.

DOI: 10.3390/su17010025

Google Scholar

[13] M. Borowski, C.M. Rathnayake, K. Zwolińska-Glądys, Nearly Zero-Energy Buildings (NZEBs): A Systematic Review of the Current Status of Single-Family Houses in the EU, Energies 18 (2025) 3215.

DOI: 10.3390/en18123215

Google Scholar

[14] A. Lozoya-Peral, C. Pérez-Carramiñana, A. Galiano-Garrigós, Á.B. González-Avilés, S. Emmitt, Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate, Buildings 13 (2023) 1381.

DOI: 10.3390/buildings13061381

Google Scholar

[15] C.-A. Domínguez-Torres, A. Domínguez-Delgado, Impact of radiative cooling on the energy performance of courtyards in Mediterranean climate, Build. Simul. 17 (2024) 1491–1513.

DOI: 10.1007/s12273-024-1153-2

Google Scholar

[16] A.G. Mohamed, Nermine, Life-cycle assessment of hybrid vernacular-modern technologies: a comparative study of the ecofordable house and conventional RC structures, Front. Built Environ. 11 (2025).

DOI: 10.3389/fbuil.2025.1568067

Google Scholar

[17] S. Bodach, W. Lang, J. Hamhaber, Climate responsive building design strategies of vernacular architecture in Nepal, Energy and Buildings 81 (2014) 227–242.

DOI: 10.1016/j.enbuild.2014.06.022

Google Scholar

[18] Z. (John) Zhai, J.M. Previtali, Ancient vernacular architecture: characteristics categorization and energy performance evaluation, Energy and Buildings 42 (2010) 357–365.

DOI: 10.1016/j.enbuild.2009.10.002

Google Scholar

[19] A. Foruzanmehr, M. Vellinga, Vernacular architecture: questions of comfort and practicability, Building Research & Information 39 (2011) 274–285. https://doi.org/10.1080/09613218. 2011.562368.

DOI: 10.1080/09613218.2011.562368

Google Scholar

[20] CYPE Ingenieros, S.A., Gerador de preços para construção civil. Portugal. CYPE Ingenieros, S.A., Gerador de preços para construção civil. Portugal. CYPE Ingenieros, S.A. (2025). https://www.geradordeprecos.info/ (accessed July 10, 2025).

DOI: 10.48021/978-65-270-5000-1

Google Scholar

[21] P. Oliver, Dwellings : the vernacular house world wide, London ; New York : Phaidon, 2003. http://archive.org/details/dwellingsvernacu0000oliv (accessed July 10, 2025).

Google Scholar

[22] J. Zong, W.S. Wan Mohamed, M.F. Zaky Jaafar, N. Ujang, Sustainable development of vernacular architecture: a systematic literature review, Journal of Asian Architecture and Building Engineering 0 (2024) 1–17.

DOI: 10.1080/13467581.2024.2399685

Google Scholar

[23] Sindicato dos Arquitectos Portugueses, Arquitectura Popular ed.4, Ordem dos Arquitectos (2004). https://www.oasrn-oasrn.org/arquitectura-popular-4.html (accessed July 11, 2025).

Google Scholar

[24] I. Cañas, S. Martı́n, Recovery of Spanish vernacular construction as a model of bioclimatic architecture, Building and Environment 39 (2004) 1477–1495. https://doi.org/10.1016/ j.buildenv.2004.04.007.

DOI: 10.1016/j.buildenv.2004.04.007

Google Scholar

[25] D. D'Agostino, B. Cuniberti, P. Bertoldi, Energy consumption and efficiency technology measures in European non-residential buildings, Energy and Buildings 153 (2017) 72–86.

DOI: 10.1016/j.enbuild.2017.07.062

Google Scholar

[26] J. Kurnitski, A. Saari, T. Kalamees, M. Vuolle, J. Niemelä, T. Tark, Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation, Energy and Buildings 43 (2011) 3279–3288.

DOI: 10.1016/j.enbuild.2011.08.033

Google Scholar

[27] IPMA, IPMA - Publicações, Publicações (2025). https://www.ipma.pt/pt/publicacoes/ (accessed July 14, 2025).

Google Scholar

[28] D.H.W. Li, L. Yang, J.C. Lam, Zero energy buildings and sustainable development implications – A review, Energy 54 (2013) 1–10.

DOI: 10.1016/j.energy.2013.01.070

Google Scholar

[29] A.J. Marszal, P. Heiselberg, J.S. Bourrelle, E. Musall, K. Voss, I. Sartori, A. Napolitano, Zero Energy Building – A review of definitions and calculation methodologies, Energy and Buildings 43 (2011) 971–979.

DOI: 10.1016/j.enbuild.2010.12.022

Google Scholar

[30] P. Torcellini, M. Deru, B. Griffith, N. Long, S. Pless, R. Judkoff, D. Crawley, Lessons Learned from Field Evaluation of Six High-Performance Buildings: Preprint, in: 2004. https://research-hub.nrel.gov/en/publications/lessons-learned-from-field-evaluation-of-six-high-performance-bui (accessed July 10, 2025).

DOI: 10.2172/884978

Google Scholar

[31] N. Cardinale, G. Rospi, P. Stefanizzi, Energy and microclimatic performance of Mediterranean vernacular buildings: The Sassi district of Matera and the Trulli district of Alberobello, Building and Environment 59 (2013) 590–598.

DOI: 10.1016/j.buildenv.2012.10.006

Google Scholar

[32] J. Fernandes, M. Peixoto, R. Mateus, H. Gervásio, Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks, Journal of Cleaner Production 241 (2019) 118286. https://doi.org/10.1016/j.jclepro. 2019.118286.

DOI: 10.1016/j.jclepro.2019.118286

Google Scholar

[33] N. Brelih, Journal Thermal and acoustic comfort requirements in European standard and national regulations, REHVA (2023). https://www.rehva.eu/rehva-journal/chapter/thermal- and-acoustic-comfort-requirements-in-european-standard-and-national-regulations (accessed July 9, 2025).

DOI: 10.7250/rehvaconf.2015.009

Google Scholar

[34] B. Lévesque, M. Lavoie, J. Joly, Residential water heater temperature: 49 or 60 degrees Celsius?, Can J Infect Dis 15 (2004) 11–12.

DOI: 10.1155/2004/109051

Google Scholar

[35] ADENE, GUIA SCE – Avaliação de Requisitos (REH), 2020. https://www.sce.pt/wp-content/uploads/2020/04/4.3-Guia-SCE-Avalia%C3%A7%C3%A3o-de-Requisitos-REH_V1-1.pdf.

Google Scholar

[36] EN, EN 15316-1:2017 - Energy performance of buildings - Method for calculation of system energy requirements and system efficiencies - Part 1: General and Energy performance expression, Module M3-1, M3-4, M3-9, M8-1, M8-4, 2017. https://standards.iteh.ai/catalog/ standards/cen/1cd60602-fb14-4604-a0c3-ce15975a2e1b/en-15316-1-2017 (accessed July 9, 2025).

DOI: 10.3403/30345840

Google Scholar

[37] ISO, ISO 9459-4, 2013. https://www.iso.org/obp/ui/en/#iso:std:iso:9459:-4:ed-1:v1:en (accessed July 9, 2025).

DOI: 10.31030/1941069

Google Scholar

[38] V. Mora-Ruiz, J. Soto-Paz, S. Attia, C. Mejía-Parada, Sustainable Earthen Construction: A Meta-Analytical Review of Environmental, Mechanical, and Thermal Performance, Buildings 15 (2025) 918.

DOI: 10.3390/buildings15060918

Google Scholar

[39] B. Givoni, Climate Considerations in Building and Urban Design, Wiley, 1998. https://www.wiley.com/en-us/Climate+Considerations+in+Building+and+Urban+Design-p-9780471291770 (accessed July 9, 2025).

Google Scholar

[40] D. Al-Shamkhee, A.B. Al-Aasam, A.H.A. Al-Waeli, G.Y. Abusaibaa, H. Moria, Passive cooling techniques for ventilation: an updated review, Renew. Energy Environ. Sustain. 7 (2022) 23.

DOI: 10.1051/rees/2022011

Google Scholar

[41] S. Attia, M. Hamdy, W. O'Brien, S. Carlucci, Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design, Energy and Buildings 60 (2013) 110–124.

DOI: 10.1016/j.enbuild.2013.01.016

Google Scholar

[42] A. Boeri, E. Antonini, J. Gaspari, D. Longo, Energy Design Strategies for Retrofitting, 2014. https://www.witpress.com/books/978-1-84564-998-2 (accessed July 9, 2025).

Google Scholar

[43] EPDB, Directive (EU) 2024/1275, 2024. http://data.europa.eu/eli/dir/2024/1275/oj/eng (accessed July 9, 2025).

Google Scholar

[44] J.L. Parracha, J. Lima, M.T. Freire, M. Ferreira, P. Faria, Vernacular earthen buildings from Leiria, Portugal – Architectural survey towards their conservation and retrofitting, Journal of Building Engineering 35 (2021) 102115.

DOI: 10.1016/j.jobe.2020.102115

Google Scholar

[45] N. Tallah, A. Geuttouche, Characterization Study of the Earth Bricks Used in the Old Constructions of the Boussaâda Area, IIETA 48 (2024) 323–329.

DOI: 10.18280/acsm.480303

Google Scholar

[46] Designing Buildings, U-values, (2023). https://www.designingbuildings.co.uk/wiki/U-values (accessed July 9, 2025).

Google Scholar

[47] ISO, ISO 6946, 2017. https://www.iso.org/obp/ui/en/#iso:std:iso:6946:ed-3:v2:en (accessed July 9, 2025).

DOI: 10.31030/2518301

Google Scholar

[48] J. Yu, Y. Dong, T.-H. Wang, W.-S. Chang, J. Park, U-Values for Building Envelopes of Different Materials: A Review, Buildings 14 (2024) 2434. https://doi.org/10.3390/ buildings14082434.

DOI: 10.3390/buildings14082434

Google Scholar

[49] S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: A review of building envelope components, Renewable and Sustainable Energy Reviews 15 (2011) 3617–3631.

DOI: 10.1016/j.rser.2011.07.014

Google Scholar

[50] S. Schroderus, V.-M. Lähteenmäki, A. Barbero-López, A. Haapala, F. Fedorik, Effect of climate change on hygrothermal performance of timber framed wall with different insulation materials, Building and Environment 269 (2025) 112438. https://doi.org/10.1016/j.buildenv. 2024.112438.

DOI: 10.1016/j.buildenv.2024.112438

Google Scholar

[51] R. Mateus, L. Bragança, Sustainability assessment and rating of buildings: Developing the methodology SBToolPT–H, Building and Environment 46 (2011) 1962–1971.

DOI: 10.1016/j.buildenv.2011.04.023

Google Scholar

[52] ISO, ISO 10077-1, 2017. https://www.iso.org/obp/ui/en/#iso:std:iso:10077:-1:ed-3:v2:en (accessed July 9, 2025).

DOI: 10.1002/bapi.200100170

Google Scholar

[53] A. Michael, M. Philokyprou, S. Thravalou, The role of adobes in the thermal performance of vernacular dwellings, (2016).

Google Scholar

[54] K. Fabbri, M. Pretelli, Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World, Energy and Buildings 76 (2014) 15–31.

DOI: 10.1016/j.enbuild.2014.02.051

Google Scholar

[55] Building Stock Observatory, Energy use in buildings, (2015). https://energy.ec.europa.eu/ system/files/2016-11/energyuse_0.pdf#:~:text=,70%20kWh%2Fm2%20for%20Portugal.

Google Scholar

[56] F. Rodrigues, C. Cardeira, J. Calado, R. Melicio, Load Profile Analysis Tool for Electrical Appliances in Households, 2016.

DOI: 10.1016/j.egypro.2016.12.117

Google Scholar

[57] G. Lobaccaro, F. Frontini, Solar Energy in Urban Environment: How Urban Densification Affects Existing Buildings, Energy Procedia 48 (2014) 1559–1569. https://doi.org/10.1016/ j.egypro.2014.02.176.

DOI: 10.1016/j.egypro.2014.02.176

Google Scholar

[58] Y. Tian, K. Chai, Building design and operation multi-objective optimization: Energy costs vs. Emissions, Energy and Buildings 329 (2025) 115225. https://doi.org/10.1016/ j.enbuild.2024.115225.

DOI: 10.1016/j.enbuild.2024.115225

Google Scholar

[59] Bauter, Products Catalog - Bauter Thermal Thin Layer Insulator, Bauter (2025). https://bauter.com/product-catalog/ (accessed July 11, 2025).

Google Scholar

[60] M. McCord, What exactly is a passive house – and could it be the future of sustainable housing?, World Economic Forum (2021). https://www.weforum.org/stories/2021/01/ passive-housing-sustainable-emissions-reduction/ (accessed July 9, 2025).

Google Scholar

[61] ISO, ISO 52000-1, 2017. https://www.iso.org/obp/ui/en/#iso:std:iso:52000:-1:ed-1:v1:en (accessed July 9, 2025).

DOI: 10.3403/30282942

Google Scholar

[62] J. Resende, H. Corvacho, The nZEB Requirements for Residential Buildings: An Analysis of Thermal Comfort and Actual Energy Needs in Portuguese Climate, Sustainability 13 (2021) 8277.

DOI: 10.3390/su13158277

Google Scholar

[63] M. Marzouk, M. ElSharkawy, A. Mahmoud, Optimizing daylight utilization of flat skylights in heritage buildings, Journal of Advanced Research 37 (2022) 133–145.

DOI: 10.1016/j.jare.2021.06.005

Google Scholar

[64] World Economic Forum, What exactly is a passive house – and could it be the future of sustainable housing?, World Economic Forum (2021). https://www.weforum.org/stories/2021/01/passive-housing-sustainable-emissions-reduction/ (accessed July 9, 2025).

Google Scholar

[65] Passivhaus Institut, Passive House requirements, (2024). https://passiv.de/en/02_informations/02_passive-house-requirements/02_passive-house-requirements.htm (accessed July 9, 2025).

Google Scholar

[66] M. Bendouma, T. Colinart, P. Glouannec, H. Noël, Laboratory study on hygrothermal behavior of three external thermal insulation systems, Energy and Buildings 210 (2020) 109742.

DOI: 10.1016/j.enbuild.2019.109742

Google Scholar