[1]
Global Cement and Concrete Association, Cement and concrete around the world, (2025). https://gccassociation.org/concretefuture/cement-concrete-around-the-world/ (accessed April 7, 2025).
Google Scholar
[2]
R.M. Andrew, Global CO2 emissions from cement production, 1928–2018, Earth Syst Sci Data 11 (2019) 1675–1710.
DOI: 10.5194/essd-11-1675-2019
Google Scholar
[3]
R.M. Andrew, G.P. Peters, The Global Carbon Project's fossil CO2 emissions dataset, 2024.
Google Scholar
[4]
E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, J Clean Prod 51 (2013) 142–161.
DOI: 10.1016/J.JCLEPRO.2012.10.049
Google Scholar
[5]
S. Barbhuiya, F. Kanavaris, B.B. Das, M. Idrees, Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development, Journal of Building Engineering 86 (2024) 108861.
DOI: 10.1016/J.JOBE.2024.108861
Google Scholar
[6]
J.A. Abdalla, R.A. Hawileh, A. Bahurudeen, G. Jyothsna, A. Sofi, V. Shanmugam, B.S. Thomas, A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability, Case Studies in Construction Materials 19 (2023).
DOI: 10.1016/j.cscm.2023.e02244
Google Scholar
[7]
A.W. Go, A.T. Conag, Utilizing sugarcane leaves/straws as source of bioenergy in the Philippines: A case in the Visayas Region, Renew Energy 132 (2019) 1230–1237.
DOI: 10.1016/j.renene.2018.09.029
Google Scholar
[8]
A.W. Go, A.T. Conag, R.M.B. Igdon, A.S. Toledo, J.S. Malila, Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context, Energy Strategy Reviews 23 (2019) 100–113.
DOI: 10.1016/j.esr.2018.12.010
Google Scholar
[9]
J.B. Jamora, S.E.L. Gudia, A.W. Go, M.B. Giduquio, M.E. Loretero, Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines, Waste Management 103 (2020) 137–145. https://doi.org/10.1016/j.wasman. 2019.12.026.
DOI: 10.1016/j.wasman.2019.12.026
Google Scholar
[10]
J.B. Jamora, A.W. Go, S.E.L. Gudia, M.B. Giduquio, M.E. Loretero, Evaluating the use of rice residue ash in cement-based industries in the Philippines – Greenhouse gas reduction, transportation, and cost assessment, J Clean Prod 398 (2023).
DOI: 10.1016/j.jclepro.2023.136623
Google Scholar
[11]
J.B. Jamora, S.E.L. Gudia, A.W. Go, M.B. Giduquio, J.W.A. Orilla, M.E. Loretero, Potential reduction of greenhouse gas emission through the use of sugarcane ash in cement-based industries: A case in the Philippines, J Clean Prod 239 (2019).
DOI: 10.1016/j.jclepro.2019.118072
Google Scholar
[12]
Philippine Fiber Industry Development Authority, Fiber Statistics, (2024). https://philfida.da.gov.ph/fiber-statistics-2024/ (accessed April 5, 2025).
Google Scholar
[13]
Philippine Statistics Authority, Agriculture, Forestry, Fisheries, PSA Statistical Database (2025). https://openstat.psa.gov.ph/Database/Agriculture-Forestry-Fisheries (accessed April 9, 2025).
Google Scholar
[14]
W.D. (Rik) Brouwer, Natural Fibre Composites in Structural Components: Alternative Applications for Sisal?, (n.d.). https://www.fao.org/4/Y1873E/y1873e0a.htm (accessed April 10, 2025).
Google Scholar
[15]
R.M.N. Arib, S.M. Sapuan, M.M.H.M. Ahmad, M.T. Paridah, H.M.D. Khairul Zaman, Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Mater Des 27 (2006) 391–396.
DOI: 10.1016/J.MATDES.2004.11.009
Google Scholar
[16]
Food and Agriculture Organization of the United Nations, Countries by Commodity, FAOSTAT (2025). https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed April 10, 2025).
Google Scholar
[17]
C. V. Cortez, A.J. Alcantara, E.P. Pacardo, C.M. Rebancos, Life Cycle Assessment of Manila Hemp in Catanduanes, Philippines, Journal of Environmental Science and Management 18 (2015) 53–61.
DOI: 10.47125/JESAM/2015_2/06
Google Scholar
[18]
E.L. Mari, C.O. Austria, A.S. Torres, E.P. Domingo, Residual Grade and Waste Abaca Fibers as Reinforcement for Packaging and Printing/Writing Papers from Recycled Fiber, Philipp J Sci 148 (2019) 349–358.
Google Scholar
[19]
R.A.J. Malenab, J.P.S. Ngo, M.A.B. Promentilla, Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite, Materials 10 (2017) 579.
DOI: 10.3390/MA10060579
Google Scholar
[20]
R. Karolina, W. Tandika, A. Hasibuan, M.A. Putra, D. Fahreza, Pineapple leaf fiber (PALF) waste as an alternative fiber in making concrete, J Phys Conf Ser 2193 (2022) 012061.
DOI: 10.1088/1742-6596/2193/1/012061
Google Scholar
[21]
S.K. Che Osmi, M.A. Zaınuddın, N.A. Misnon, S. Sojipto, H. Husen, Effect of Pineapple Leaf Fibre as Additional Material in Concrete Mixture, Lecture Notes in Civil Engineering 215 (2022) 525–537.
DOI: 10.1007/978-981-16-7924-7_34
Google Scholar