Evaluation of Mechanical Properties and Comprehensive Modeling of CMC with Stiff and Weak Matrices

Article Preview

Abstract:

The mechanical properties of ceramic matrix composites (CMC) depend on the individual properties of fibers and matrix, the fiber-matrix interface, the microstructure and the orientation of the fibers. The fiber-matrix interface of ceramics with stiff matrices (e.g. CVI-derived SiC/SiC) must be weak enough to allow crack deflection and debonding in order to achieve excellent strength and strain to failure (weak interface composites WIC). This micromechanical behavior has been intensively investigated during the last 20 years. With the development of CMC with weak matrices (weak matrix composites WMC) as e.g. oxide/oxide composites or polymer derived CMC the mechanical response can not be explained anymore by these models as other microstructural mechanisms occur. If the fibers are oriented in loading direction in a tensile test the WMC behave almost linear elastic up to failure and show a high strength. Under shear mode or if the fibers are oriented off axis a significant quasiplastic stress-strain behavior occurs with high strain to failure and low strength. This complex mechanical behavior of WMC will be explained using a finite element (FE) approach. The micromechanical as well as the FE models will be validated and attributed to the different manufacturing routes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1435-1443

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. He, J.W. Hutchinson: Int. J. Solids Struct. 25 (9) (1989) p.1053].

Google Scholar

[2] A.G. Evans, D.B. Marshall: Acta Metall. 37(10) (1988) p.2567.

Google Scholar

[3] D. Rouby, H. Osmani: J. Mater. Sci. Lett. 7 (1988) p.1154.

Google Scholar

[4] W.C. Tu, F. F. Lange, A. G. Evans: J. Am. Ceram. Soc. 79 (1996) 417.

Google Scholar

[5] M.A. Mattoni, J.Y. Yang, C.G. Levi, F.W. Zok: J. Am. Ceram. Soc. Vol. 84 (11) (2001) p.2594.

Google Scholar

[6] J. Aveston, G.A. Cooper, A. Kelly: Conf. Proc., National Physical Laboratory, IPC Scientic and Technical Press (Guildford 1971) p.15.

Google Scholar

[7] R. J. Kerans, R. S. Hay, T. A. Parthasarathy, M. K. Cinibulk: J. Am. Cer. Soc. 85 (2002) 2600.

Google Scholar

[8] M. Kuntz, G. Grathwohl: Mater. Sci. Eng. A250 (1998) p.313.

Google Scholar

[9] B.K. Ahn, W.A. Curtin, T.A. Parthasarathy, R.E. Dutton: Compos. Sci. Technol. 58 (1998) p.1775.

Google Scholar

[10] W.A. Curtin, B.K. Ahn, N. Takeda: Acta Materialia 46 (1998) p.3409.

Google Scholar

[11] J. Lamon: Compos. Sci. Technol. 61 (2001) p.2259.

Google Scholar

[12] G. M. Genin, J. W. Hutchinson: J. Am. Ceram. Soc. 80 (1997) 1245.

Google Scholar

[13] K. Tushtev, D. Koch: Forschung im Ingenieurwesen 69 (2005) p.216.

Google Scholar

[14] K. Tushtev, J. Horvath, D. Koch, G. Grathwohl: Materialwissenschaft und Werkstofftechnik 35 (2004) p.143.

DOI: 10.1002/mawe.200300719

Google Scholar

[15] J.F. Maire, J.L. Chaboche: Aerosp. Sci. Techn. 1 (1997) p.247.

Google Scholar

[16] G. Camus: Int. J. Solids Struct. 37 (2000) p.919.

Google Scholar

[17] J.L. Chaboche, J.F. Maire: Aerosp. Sci. Technol. 6 (2002) p.131.

Google Scholar

[18] O. Siron, J. Pailhes, J. Lamon: Compos. Sci. Technol. 59 (1999) p.1.

Google Scholar

[19] J. Horvath: Masterthesis, (Universität Bremen 2006).

Google Scholar

[20] R. Hill: The mathematical theory of plasticity (Oxford University Press, New York 1950).

Google Scholar

[21] D. Koch, K. Tushtev, G. Grathwohl: 28th International Cocoa Beach Conference and Exposition on Advanced Ceramics & Composites (Cocoa Beach Conference Proc. 2004).

DOI: 10.21236/ada415889

Google Scholar

[22] K. Tushtev, D. Koch,J. Horvath, G. Grathwohl: Z. f. Metallkunde (2006) submitted.

Google Scholar