Strengthening of ZrO2 Ceramics due to Nano-Crystallization

Article Preview

Abstract:

The fracture strength σf of ZrO2-based ceramics tends to increase with decreasing grain size d. As compared with the data for submicrometer-grain-sized material with d ≈ 350 nm, nano-crystallization of ZrO2 ceramics less than d ≈ 90 nm can improve σf by a factor of 2.0-2.5. The maximum strength reaches σf ≈ 2500 MPa, which is classed as the highest σf of oxide ceramic materials. The high σf can be associated with an increase in the critical t →m transformation stress and a decrease in the flaw size due to nano-crystallization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1674-1679

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Morita, K. Hiraga and Y. Sakka: J. Am. Ceram. Soc., Vol. 85 (2002), p. (1900).

Google Scholar

[2] K. Morita, K. Hiraga, B. -N. Kim and Y. Sakka: Mater. Trans., Vol. 45 (2004), p. (2073).

Google Scholar

[3] T. G. Nieh, J. Wadsworth and O. D. Sherby: Superplasticity in Metals and Ceramics (Cambridge University Press, 1997).

Google Scholar

[4] K. Niihara: J. Ceram. Soc. Jpn., Vol. 99 (1991), p.974.

Google Scholar

[5] M. J. Mayo and D. C. Hague: Nanostruct. Mater., Vol. 1 (1992), p.173.

Google Scholar

[6] H. Kimura: Advances in Powder Metallurgy & Particulate Mater-1999 (PM2TEC '99, Vancouver), Vol. 12 (1999), p.55.

Google Scholar

[7] G. D. Zhan, J. Kuntz, J. Wan and A. M. Mukherjee: Nature Mater., Vol. 2 (2003), p.38.

Google Scholar

[8] G. D. Zhan, J. Kuntz, J. Wan, J. Garay and A. M. Mukherjee: J. Am. Soc., Vol. 86 (2003), p.200.

Google Scholar

[9] K. Morita, B. -N. Kim, K. Hiraga and Y. Sakka, Trans. Mater. Res. Soc. Jpn., Vol. 30 (2005), p.1117.

Google Scholar

[10] K. Morita, K. Hiraga, B. -N. Kim, H. Yoshida and Y. Sakka: Scripta Mater., Vol. 53 (2005), p.1007.

Google Scholar

[11] J. C. Wurst and J. A. Nelson: J. Am. Ceram. Soc., Vol. 55 (1972), p.109.

Google Scholar

[12] D. B. Marshall, T. Noma and A. G. Evans: J. Am. Soc., Vol. 65 (1982), p. C-175.

Google Scholar

[13] K. Morita, B. -N. Kim, H. Yoshida, K. Hiraga and Y. Sakka: Trans. Mater. Res. Soc. Jpn., to be published.

Google Scholar

[14] K. Tsukuma, Y. Kubota and T. Tsukidate: Advances in Ceramics (Amrican Ceramic Society, Columbus, Ohio, 1984), Vol. 12, p.382.

Google Scholar

[15] O. Quénard, C.H. Laurent, A. Peigney and A. Rousset: Mat. Res. Bull., Vol. 35 (2000), p. (1979).

Google Scholar

[16] K. Tsukuma and K. Ueda: J. Am. Ceram. Soc., Vol. 68 (1985), p. C-4.

Google Scholar

[17] K. Tsukuma, K. Ueda, K. Matsushita and M. Shimada: J. Am. Ceram. Soc., Vol. 68 (1985), p. C-56.

Google Scholar

[18] K. Morita, B. -N. Kim, H. Yoshida and K. Hiraga: to be submitted.

Google Scholar

[19] M.V. Swain and L.R.F. Rose: J. Am. Ceram. Soc., Vol. 69 (1986), p.511.

Google Scholar

[20] A.G. Evans and R.M. Cannon: Acta Mater., Vol. 34 (1986), p.761.

Google Scholar

[21] D.J. Green, R.H.J. Hannink and M.V. Swain: Transformation Toughening of Ceramics (CRC press, 1989).

Google Scholar

[22] F.F. Lange: J. Am. Ceram. Soc., Vol. 66 (1983), p.396.

Google Scholar