An Experimental Validation of a 3D Kinetic, Monte Carlo Model for Microstructural Evolution during Sintering

Article Preview

Abstract:

An experimental validation of a 3D kinetic, Monte Carlo model for simulation of microstructural evolution during solid state sintering will be presented. The model – a statistical mechanical model, which can simulate curvature-driven grain growth, pore migration, and vacancy formation, diffusion and annihilation – is validated by comparing microstructural evolution obtained experimentally for a copper powder compact. The 3D microstructural evolution of copper powder particles sintering was imaged in-situ by microtomography. The images show particles with internal porosity percolating through the particles. Microstructural features – e.g., neck formation and growth – from the experimental images as well as the overall densification rates are compared to the simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

522-529

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Tikare, M. Braginsky, E. Olevsky: J. Amer. Ceram. Soc. Vol. 86.

Google Scholar

[1] (2003), p.49.

Google Scholar

[2] M. Braginsky, V. Tikare, E. Olevsky: Int. J. Sol. Struc. Vol. 42.

Google Scholar

[2] (2004) p.621.

Google Scholar

[3] R.L. Coble: J. Amer. Ceram. Soc. Vol. 41 (1958), p.55.

Google Scholar

[4] D.L. Johnson, I.B. Cutler: J. Amer. Ceram. Soc. Vol. 46 (1963), p.541.

Google Scholar

[5] D.L. Johnson, T.M. Clarke: Acta Metal. Vol. 12 (1964), p.1173.

Google Scholar

[6] D.L. Johnson: J. Appl. Phys. Vol. 40 (1969), p.192.

Google Scholar

[7] H.E. Exner: Acta Metall. Vol. 35 (1987), p.587.

Google Scholar

[8] K. Tsuruta, A Omeltchenko, R. K. Kalia, P. Vashishta: Euro. Phys. Lett. Vol, 33 (1996), p.441.

Google Scholar

[9] J.W. Bullard: J. of Appl. Phys. Vol. 81.

Google Scholar

[1] (1997), p.159.

Google Scholar

[10] W. Zhang, J.H. Scheibel, Acta Metall. Vol. 43.

Google Scholar

[12] (1995), p.4377.

Google Scholar

[11] H. Zhou, J.J. Derby: J. Am. Cer. Soc. Vol 81.

Google Scholar

[3] (1998), p.533.

Google Scholar

[12] T. Kraft, H. Riedel, J. Euro. Cer. Soc, Vol 24 (2004), p.345.

Google Scholar

[13] D. Bouvard, R.M. McMeeking: J. Am. Ceram. Soc. Vol 79.

Google Scholar

[3] (1996), p.666.

Google Scholar

[14] J. Svoboda, H. Riedel, H. Zipse: Acta Metall. Vol. 42.

Google Scholar

[2] (1994), p.435.

Google Scholar

[15] J. Zhao, M.P. Harmer: J. Am. Ceram. Soc. Vol. 71.

Google Scholar

[2] (1988), p.113.

Google Scholar

[16] J. Zhao, M.P. Harmer: J. Am. Ceram. Soc. Vol. 71.

Google Scholar

[7] (1988), p.530.

Google Scholar

[17] K. Darcovich, F. Toll, P. Hontanx, V. Roux, K Shinagawa: Mat. Sci. Eng. Vol. A348 (2003), p.76.

Google Scholar

[18] O. Lame, D. Bellet, M. Di Michiel, D. Bouvard: Acta Mater., Vol. 52 (2004), p.977.

Google Scholar