Multi-Scale Simulations of Rearrangement Effects and Anisotropic Behaviour during Sintering

Article Preview

Abstract:

Numerical modeling of sintering by continuum mechanical simulations is successfully applied today to predict e.g. the distortions developing during sintering. Several examples that demonstrate the possibilities of such simulations especially for industrial applications have been published recently. However, there are still open questions regarding the influence of grain rearrangement, crack formation and anisotropic starting configurations (e.g. due to prior compaction). By using the Discrete Element Method the sintering process can be investigated on a more fundamental mesoscopic scale. This method also considers effects due to particle rearrangement or anisotropic configurations as well as crack developments automatically. Their influence on various macroscopic properties like densification rate and viscosities is studied. Suggestions how to use these insights to improve existing continuum mechanical models are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

530-538

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.A. Olevsky, Mater. Sci. Eng. R. Vol. 23 (1998), p.41.

Google Scholar

[2] H. Riedel and T. Kraft: Continuum Scale Simulation of Engineering Materials: Fundamentals - Microstructures - Process Applications (Wiley-VCH, Berlin, Germany 2004).

DOI: 10.1002/3527603786.ch35

Google Scholar

[3] J. Pan, Int. Mater. Rev. Vol. 48 (2003), p.69.

Google Scholar

[4] T. Kraft, Modelling Simul. Mater. Sci. Eng. Vol. 11 (2003), p.381.

Google Scholar

[5] R.M. German: Critical Overview of Sintering Computer Simulations (Advances in Powder Metallurgy & Particulate Materials, Part 9 - Modeling, p.1, MPIF, Princeton 2002).

Google Scholar

[6] O. Coube, R. Huber, R. Kösters, A. Plankensteiner and M. Magin: Numerical Simulation of Die Compaction and Sintering of Hardmetal Drill Tips (Proc. 16th Int. Plansee Seminar, Vol. 2, p.243, PLANSEE AG, Reutte, Austria 2005).

Google Scholar

[7] T. Kraft, H. Riedel and P. Gumbsch: Computer Simulation as a Tool in PM Material Science and Technology ( Proc. 16th Int. Plansee Seminar, vol. 2, p.9, PLANSEE AG, Reutte, Austria 2005).

Google Scholar

[8] M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, UK 1987).

Google Scholar

[9] H. Riedel, H. Zipse and J. Svoboda: Acta Metall. Mater. Vol 42 (1994), p.445.

Google Scholar

[10] J. Svoboda, H. Riedel and H. Zipse: Acta Metall. Mater. Vol 42 (1994), p.435.

Google Scholar

[11] R. K. Bordia, R. Zuo, O. Guillon, S.M. Salamone and J. Rödel: Acta Mater. Vol. 54 (2006), p.111.

Google Scholar

[12] P.A. Cundall and O.D.L. Strack: Geotech. Vol. 29 (1979), p.47.

Google Scholar

[13] C. Bierwisch, B. Henrich, T. Kraft, M. Moseler and H. Riedel: 3D-Modelling of Die Filling (Euro PM 2005, Vol. 3, p.331, U.K. 2005).

Google Scholar

[14] O. Coube, A.C.F. Cocks and C.Y. Wu: Powder Metall. Vol. 48 (2005), p.68.

Google Scholar

[15] I. Schmidt, A. Wonisch, B. Henrich, M. Moseler and H. Riedel: Computation of Macroscopic Yield Surfaces by Particle Methods (Euro PM 2005, vol. 3, p.336 U.K. 2005).

Google Scholar

[16] C.L. Martin, D. Bouvard and S. Shima: Mech. Phys. Solids Vol. 51 (2003), p.667.

Google Scholar

[17] C. Martin, L.C.R. Schneider and D. Bouvard: Discrete Element Modeling of the Sintering of Powders (4th Int. Conf. on Science, Technology and Applications of Sintering, p.252 France 2005).

Google Scholar

[18] S. Luding, K. Manetsberger and J. Mullers: J. Mech. Phys. Solids Vol. 53 (2005), p.455.

Google Scholar

[19] W. C. Swope and H. Andersen: J. Phys. Chem. Vol. 88 (1984), p.6548.

Google Scholar

[20] C. Thornton and S.J. Antony: Philos. Trans. R. Soc. London A Vol. 356 (1998), p.2763.

Google Scholar

[21] M. Parrinello and A. Rahman: Phys. Rev. Lett. Vol. 45 (1980), p.1196.

Google Scholar

[22] M.J. Jiang, J.M. Konrad and S. Leroueil: Comp. and Geotech. Vol 30 (2003), p.579.

Google Scholar

[23] Z. Hashin and S. Shtrikman: J. Mech. Phys. Solids Vol. 10 (1962), p.343.

Google Scholar