Conventional and SPS Sintering of a Nanocrystalline Alumina: A Comparative Study

Article Preview

Abstract:

In this paper, five powdered samples, containing different amounts of nanosized α-alumina, were obtained by controlled thermal pre-treatments of a transition alumina, and then densified by both free-sintering in air at 1500°C for 3 h and by Spark Plasma Sintering in the temperature range 1150°C - 1400°C with different soaking times at the maximum temperature. A comparative study of the influence of the phase composition in the starting alumina powders on both sintering behavior and microstructural features of the densified bodies is presented, showing a relevant influence of powder thermal pre-treatment on the SPS process, in a strict analogy to natural sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

957-962

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.D. Zhan, J. Kuntz, J. Wan, J. Garay, A.K. Mkherjee: J. Amer. Cer. Soc. Vol. 86 (2002) p.200.

Google Scholar

[2] X. Wang, N.P. Padture, H. Tanaka, A.L. Ortiz: Acta Mater. Vol. 53 (2005) p.271.

Google Scholar

[3] J. Hong, L. Gao, S.D.D.L. Torre, H. Miyamoto, K. Miyamoto: Mater. Lett. Vol. 43 (2000) p.27.

Google Scholar

[4] R.S. Dobedoe, G.D. West, M.H. Lewis: Bull. of Europ. Cer. Soc. Vol. 1 (2003) p.19.

Google Scholar

[5] Z. Shen, M. Johnsson, Z. Zhao, M. Nygren: J. Amer. Cer. Soc. Vol. 85 (2002) p (1921).

Google Scholar

[6] S.W. Wang, L.D. Chen, T. Hirai: J. of the Mater. Res. Vol. 15 (2000) p.982.

Google Scholar

[7] R.S. Mishra, J.A. Schneider, J.F. Shackelford, A.K. Mukherjee: NanoStruct. Mater. Vol. 5 (1995) p.525.

Google Scholar

[8] Y. Zhuo, K. Hirao, Y. Yamauchi, S. Kanzaki: J. Europ. Cer. Soc. Vol. 24 (2004) p.3465.

Google Scholar

[9] L.A. Stanciu, V.Y. Kodash, J.R. Groza: Metall. and Mater. Transaction Vol. 32A (2001) p.2633.

Google Scholar

[10] F.W. Dynys, J.W. Halloran: J. Amer. Cer. Soc. Vol. 65 (1982) p.442.

Google Scholar

[11] G.L. Messing, M. Kumagai: Amer. Cer. Soc. Bull. Vol. 73 (1994) p.88.

Google Scholar

[12] M.L. Panchula, J.Y. Ying: NanoStruct. Mater. Vol. 9 (1997) p.161.

Google Scholar

[13] C.S. Nordahl, G.L. Messing: J. Europ. Cer. Soc. Vol. 22 (2002) p.415.

Google Scholar

[14] C. Legros, C. Carry, P. Bowen, H. Hofmann: J. Europ. Cer. Soc. Vol. 19 (1999) p. (1967).

Google Scholar

[15] S.J. Wu, L.C. De Jonghe: J. Amer. Cer. Soc. Vol. 79 (1996) p.2207.

Google Scholar

[16] V.R. Palkar, D. Thapa, M.S. Multani, S.G. Malghan: Mater. Lett. Vol. 36 (1998) p.235.

Google Scholar

[17] http: /www. nanophase. com.

Google Scholar

[18] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley-Interscience, New York 1974, p.540.

Google Scholar

[19] A.M. Locci, R. Orrù, G. Cao: J. Mater. Res. Vol. 20 (2005) p.734.

Google Scholar

[20] A.M. Locci, R. Orrù, G. Cao, Z.A. Munir: J. Amer. Cer. Soc. Vol. 89 (2006) p.848.

Google Scholar