Studies by In Situ and Real-Time Synchrotron Imaging of Interface Dynamics and Defect Formation in Solidification Processing

Article Preview

Abstract:

The solid microstructure built in the solid governs the properties of materials elaborated from the melt. In order to clarify the dynamical mechanisms controlling solidification processing, we use in situ and real-time synchrotron X-ray radiography at ESRF (European Synchrotron Radiation Facility) to analyze microstructure formation in thin aluminum alloys solidified in the Bridgman facility installed at the ID19 beamline. During directional solidification of Al - 3.5 wt% Ni alloys, global mechanical constraints induced by the shape are found to act on the solid microstructure. In particular, radiography videos of dendritic growth show disorientations of sidebranches induced by mechanical stresses. In the solidification of AlPdMn quasicrystals, live imaging reveals that facetted growth proceeds by the lateral motion of ledges at the solid-melt interface. When the solidification rate is increased, the kinetic undercooling becomes sufficient for grain nucleation and growth in the liquid. These grains develop specific features that can be attributed to grain competition and concomitant poisoning of growth caused by the rejection of aluminum in the melt.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Cross and P.C. Hohenberg: Rev. Mod. Phys. Vol. 65 (1993) p.851.

Google Scholar

[2] B. Billia and R. Trivedi: in Handbook of Crystal Growth - Vol. 1B Amsterdam, 1993) Ch. 14.

Google Scholar

[3] K.A. Jackson. and J.D. Hunt: Acta Metall. Vol. 13 (1965).

Google Scholar

[19] artorano, C. Beckermann and Ch-A. Gandin: Metall. Mater. Trans. A Vol. 34 (2003) p.

Google Scholar

[20] uyen Thi et al.: Phys. Rev. E, submitted icroscopic Interfacial Phenomena (Cambridge.

Google Scholar

[22] 1991) p.2637.

Google Scholar

[4] P. Cloetens et al.: J. Phys. D - Appl. Phys. Vol. 29 (1996) p.133.

Google Scholar

[5] H. Nguyen Thi et al.: J. Phys. D - Appl. Phys. Vol. 36 (2003) p. A.

Google Scholar

[6] R.H. Mathiesen et al.: Metall. Mater. Trans. B Vol. 33 (2002) p.613.

Google Scholar

[7] H. Yasuda et al.: J. Crystal Growth Vol. 262 (2004) p.645.

Google Scholar

[8] H. Nguyen Thi et al.: J. Crystal Growth Vol. 281(2005) p.6.

Google Scholar

[9] B. Billia et al.: Phys. Rev. Lett. Vol. 93 (2004) p.126105.

Google Scholar

[10] M. Boudard et al.: Phil. Mag. Let. Vol. 71 (1995) p.11.

Google Scholar

[11] Y. Yokoyama et al.: Trans. JIM Vol. 38 (1997) p.943.

Google Scholar

[12] A. Langsdorf and W. Assmus: J. Crystal Growth Vol. 1.

Google Scholar

[13] V.E. Dmitrienko, S.B. Astaf'ev and M. Kléman: Phys. Rev. B Vol. 59 (19.

Google Scholar

[14] C.L. Henley: Comm. Cond. Matt. Phys. Vol. 13 (1987) p.59.

Google Scholar

[15] V. Simonet et al.: Phys. Rev. B Vol. 65 (2001) p.024203.

Google Scholar

[16] C. Beeli and H.U. Nissen: Phil. Mag. B Vol. 68 (1993) p.4.

Google Scholar

[17] A.A. Chernov: J. Crystal Growth Vol. 24-25 (1974) p.11.

Google Scholar

[18] L.M. Kolganova et al., in Growth of Crystals - Vol. 11 (Co p.295. M.A. M 1657 H. Ng.

Google Scholar

[21] W.A. Tiller: The Science of Crystallization : M Univ. Press, Cambridge, UK, 1991). C. Dong et al.: J. Mater. Res. Vol. 6.

Google Scholar