Phase Transformations and Interstitial Atom Diffusion in Iron-Nitride, Iron-Carbonitride and Iron-Carbide Layers

Article Preview

Abstract:

α-Iron foils were exposed to various gas atmospheres containing all or a number of the components NH3, CO, H2 and N2 for different periods of time at 550°C. In this way surficial compound layers were generated which contain different iron nitrides (ε, γ’), iron carbonitride (ε) and/or iron carbide (cementite, Fe3C). These compound layers were used to study phase transformations associated with N- and/or Cdiffusion processes in the corresponding phases. These studies involved (a) the layer-growth kinetics of cementite and (b) various solid-state phase transformations occurring in compound layers upon annealing in vacuum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-41

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Liedtke, U. Baudis, J. Boßlet, U. Huchel, H. Klümper-Westkamp, W. Lerche, H. -J. Spies: Wärmebehandlung von Eisenwerkstoffen - Nitrieren und Nitrocarburieren (Expert-Verlag, Germany 2006).

Google Scholar

[2] E.J. Mittemeijer, M.A.J. Somers: Surf. Eng. Vol. 13 (1997), p.483.

Google Scholar

[3] L. Torchane, P. Bilger, J. Dulcy and M. Gantois: Metall. Mater. Trans. A Vol. 27A (1996), p.1823.

DOI: 10.1007/bf02651932

Google Scholar

[4] M.A.J. Somers, E.J. Mittemeijer: Metall. Mater. Trans. A Vol 27A (1995), p.57.

Google Scholar

[5] T.B. Massalski, H. Okamoto (edts. ): Binary Alloy Phase Diagrams (ASM International, USA, 1990).

Google Scholar

[6] K.H. Jack: Proc. Roy. Soc. A Vol. 195 (1948), p.34. 3 The error value of (±30) given in Ref.

Google Scholar

[23] was caused by a printing error.

Google Scholar

[7] H. Jacobs, D. Rechenbach and U. Zachwieja: J. Alloys Compd. Vol. 227 (1995), p.10.

Google Scholar

[8] K.H. Jack: Acta Crystallogr. Vol. 5 (1952), p.404.

Google Scholar

[9] K.H. Jack: Proc. Roy. Soc. A Vol. 195 (1948), p.41.

Google Scholar

[10] F.K. Naumann, G. Langenscheid: Arch. Eisenhüttenw. Vol. 36 (1965), p.677.

Google Scholar

[11] A. Leineweber, H. Jacobs, F. Hüning, H. Lueken, W. Kockelmann: J. Alloys Compd. Vol. 316 (2001), p.21.

Google Scholar

[12] I.G. Wood, L. Vocadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, J. Brodhold: J. Appl. Crystallogr. Vol. 37 (2004), p.82.

Google Scholar

[13] H.A. Wriedt, L. Zwell: Trans. Metallurg. Soc. AIME Vol 224 (1962), p.1242.

Google Scholar

[14] K.H. Jack: Proc. Roy. Soc. A Vol. 208 (1951), p.200.

Google Scholar

[15] R.C. Ruhl, M. Cohen: Trans. Metallurg. Soc. AIME Vol. 245 (1969), p.241.

Google Scholar

[16] G. Petzow: Metallographisches, keramographisches und plastographisches Ätzen (Gebrüder Bornträger, Germany 1994).

DOI: 10.1002/maco.19940451212

Google Scholar

[17] M.A.J. Somers, P.F. Colijn, W.G. Sloof, E.J. Mittemeijer: Z. Metallkde. Vol. 81 (1990), p.33.

Google Scholar

[18] M.A.J. Somers, E.J. Mittemeijer: Surf. Eng. Vol. 3 (1987), p.123.

Google Scholar

[19] H. Du, J. Ågren: Metall. Mater. Trans. A Vol. 27A (1996), p.1073.

Google Scholar

[20] H.J. Grabke: Mater. Corr. Vol. 54 (2003), p.736.

Google Scholar

[21] A. Schneider, H.J. Grabke: Mater. Corr. Vol. 54 (2003), p.793.

Google Scholar

[22] T. Gressmann, M. Nikolussi, A. Leineweber, E.J. Mittemeijer, submitted to Scr. Mater.

Google Scholar

[23] T. Liapina, A. Leineweber, E.J. Mittemeijer: Metallurg. Mater. Trans. A Vol. 37A (2006), p.319.

Google Scholar

[24] H. Du: J. Phase Equil. Vol. 14 (1993), p.682.

Google Scholar

[25] L. Maldzinski, Z. Przylecki, J. Kunz: J. Steel Res. Vol. 57 (1986), p.645.

Google Scholar

[26] L. Torchane, P. Bilger, J. Dulcy, M. Gantois: Metall. Mater. Trans. A Vol. 27A (1996), p.1823.

DOI: 10.1007/bf02651932

Google Scholar

[27] B. Prenosil: Kovove Mater. Vol. 3 (1965), p.69.

Google Scholar

[28] Y.M. Lakhtin and Y.D. Kogan: Nitriding of steel (Mashinostroenie, Soviet Union 1976).

Google Scholar