In Situ Ultrahigh Vacuum Transmission Electron Microscope Investigations of Dynamical Changes of Nanostructures on Silicon

Article Preview

Abstract:

In situ ultrahigh vacuum transmission electron microscope (TEM) is a powerful tool to investigate the dynamic changes of nanostructures on silicon. By observing growth and phase transitions in situ, understanding of their mechanisms can be used to model relevant processes. With the precise knowledge of the changes occurred on an atomic level, accurate control of the growth process can be achieved. The dynamical changes occurred on the nano scale are often unexpected, which also underscores the importance of the approach. In this presentation, we highlight two examples to demonstrate the unique capability of in situ TEM to study the dynamical changes. The examples include collective movement of Au nanoparticles and directed movement of Au-Si droplets on Si bi-crystal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-119

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch and M. Zacharias: Nanotechnology Vol. 16 (2005), p.913.

DOI: 10.1088/0957-4484/16/6/048

Google Scholar

[2] Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda: Appl. Phys. Lett. Vol. 81(2002), p.5177.

Google Scholar

[3] J. Carrey, J. L. Maurice, P. Jensen, and A. Vaures: Appl. Surf. Sci. Vol. 164 (2000), p.48.

Google Scholar

[4] A. A. Schmidt, H, Eggers, K. Herwig, and R. Anton: Surf. Sci. Vol. 349 (1996), p.301.

Google Scholar

[5] Pierre Deltour, Jean-Louis Barrat, and Pablo Jensen: Phys. Rev. Lett. Vol. 78 (1997), p.4597.

Google Scholar

[6] S. C. Wang and Gert Ehrlich: Phys. Rev. Lett. Vol. 79 (1997), p.4234.

Google Scholar

[7] R. C. Jaklevic, and L. Elie: Phys. Rev. Lett. Vol. 60 (1988), p.120.

Google Scholar

[8] Q.Y. Tong and U. Goesele: Semiconductor Wafer Bonding (Electrochem. Soc. Pennington, NJ, 1998).

Google Scholar

[9] J.L. Gardea-Torresdey: J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, and M.J. Yacaman: Nano Lett. Vol. 2 (2002), p.397.

DOI: 10.1021/nl015673+

Google Scholar

[10] J. H. He, W. W. Wu, S. W. Lee, L. J. Chen, Y. L. Chueh and L. J. Chou: Appl. Phys. Lett. Vol. 86 (2005), p.263109.

Google Scholar

[11] C.H. Liu, W.W. Wu, and L.J. Chen: Appl. Phys. Lett. Vol. 88 (2006), p.023117.

Google Scholar

[12] C.H. Liu, W.W. Wu, and L.J. Chen: Appl. Phys. Lett. Vol. 88 (2006), p.133112.

Google Scholar

[13] C. Brechignac, Ph. Cahuzac, F. Carlier, C. Colliex, M. de Frutos, N. Kebaıli, J. Le Roux, A. Masson, and B. Yoon, J. Euro. Phys. D Vol. 24 (2003), p.245.

Google Scholar

[14] S. Iijima, and T. Ichihashi, Phys. Rev. Lett. Vol. 56 (1986), p.616.

Google Scholar

[15] F. Liu: Phys. Rev. Lett. 89 (2002), p.246105.

Google Scholar

[16] W.C. Wang, M. Zeman, H. Ade, and R.J. Nemanich: Phys. Rev. Lett. 90 (2003), p.045421.

Google Scholar