Fabrication and Evaluation of Ag-Bi2223 Composite Tapes with Interfilamentary Resistive Barriers

Article Preview

Abstract:

We fabricated Ag-sheathed Bi2223 composite tapes with interfilamentary resistive barriers by using powder-in-tube (PIT) method and evaluated their AC loss characteristics at 77 K. The mixture of Ca2CuO3 and 30 wt% Bi2212 are used as the barrier material for tape fabrication. The barrier layers were coated on all surfaces of the hexagonal monocore wires. Then, several pieces of the coated wires were stacked and inserted into an Ag tube, and the composites were deformed into tape shape. By introducing the barrier layers between the filaments, the Jc values at 77 K and self-field are degraded about 15%. The loss measurements under AC parallel transverse magnetic field were systematically performed, as a function of field amplitude and frequency. The loss properties in the barrier tape were compared with those in the tape without barriers. The results indicated that introducing Ca2CuO3 barriers is effective to suppress the electromagnetic coupling among the filaments and also to reduce the magnetization losses under parallel transverse field. We also present the fabrication of the barrier tapes on the order of several meters, together with the uniformity of superconducting properties along a length direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kwasnitza, St. Clerk, R. Flükiger, Y.B. Huang: Physica C 299 (1998), p.113.

Google Scholar

[2] M. Dhallé, A. Polcari, F. Marti, G. Witz, Y. B. Huang, R. Flükiger, St. Clerc, K. Kwasnitza, Physica C 310 (1998), p.127.

DOI: 10.1016/s0921-4534(98)00447-x

Google Scholar

[3] G. Witz, M. Dhallé, R. Passerini, X. -D. Su, Y.B. Huang, A. Erb, R. Flükiger: Cryogenics 41 (2001), p.97.

DOI: 10.1016/s0011-2275(01)00054-6

Google Scholar

[4] P.X. Zhang, R. Inada, Y. Takatori, A. Oota, H. Fujimoto, P. Ji, Z.Z. Duan, C.S. Li, H.L. Zheng, L. Zhou: IEEE Trans. Appl. Supercond. 11 (2001), p.2784.

DOI: 10.1109/77.919641

Google Scholar

[5] H. Maeda, T. Inaba, M. Sato, P.X. Zhang, W.P. Chen: Physica C 357-360 (2001), p.1230.

Google Scholar

[6] R. Nast, H. Eckelmann, O. Zabara, S.I. Schlachter, W. Goldacker: Physica C 372-376 (2002), p.1777.

DOI: 10.1016/s0921-4534(02)01124-3

Google Scholar

[7] N. Ayai, E. Ueno, K. Hayashi, K. Sato, K. Yasuda: Physica C 392-396 (2003), p.1003.

DOI: 10.1016/s0921-4534(03)01156-0

Google Scholar

[8] N. Ayai, K. Hayashi, K. Yasuda: IEEE Trans. Appl. Supercond 15 (2005). P. 2510.

Google Scholar

[9] P.X. Zhang, A. Oota, R. Inada, T. Uno, T. Yamamoto, Y. Takatori, K. Fukuyama, H. Fujimoto, L. Zhou: Physica C 357-360 (2001), p.1222.

DOI: 10.1016/s0921-4534(01)00497-x

Google Scholar

[10] N. Amemiya, O. Tsukamoto, M. Torii, M. Ciszek, H. Kawasaki, E. Mizushima, S. Ishii, N. Ayai, K. Hayashi, M. Ueyama: IEEE Trans. Appl. Supercond. 10 (2000), p.1204.

DOI: 10.1109/77.828450

Google Scholar

[11] J.J. Rabbers, D.C. van der Laan, B. ten Haken, H. J. ten Kate: IEEE Trans. Appl. Supercond. 9 (1999), p.1185.

DOI: 10.1109/77.783511

Google Scholar

[12] S. Yamamura, M. Sugahara, O. Tsukamoto, M. Yamaguchi, M. Yamamoto: Superconductor Engineering (in Japanese), The Institute of Electrical Engineers of Japan (1988), p.132.

Google Scholar