Metamagnetic Transitions and Stepwise GMR in Uniaxial Fe/Cr Superlattices

Article Preview

Abstract:

We investigated the structure, magnetic and magnetoresistive properties of antiferromagnetically coupled [Fe(85Å)/Cr(tCr)]12 superlattices with the Cr layers thickness tCr = 12.4 and 13.6 Å, grown simultaneously on (100)MgO and (211)MgO substrates. It is shown that the (211)MgO substrate is appropriate for the growth of (210)Fe/Cr multilayers with a strong uniaxial in-plane anisotropy. The stepwise behavior of magnetization and magnetoresistance is revealed in the case when the magnetic field is applied along the easy axis in a film plane of (211)MgO/[(210)Fe/Cr]12 superlattices. The steps on M(H) and ΔR(H)/R dependences are caused by the flip of the magnetic moments of individual Fe layers. The qualitative information about the sequence of spin-flip transitions is extracted from the comparative analysis of magnetization and magnetoresistance data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Hellwig, A. Berger, E. Fullerton: Phys. Rev. Lett. Vol. 91, (2003), p.197.

Google Scholar

[2] O. Hellwig, T.L. Kirk, J.B. Kortright, A. Berger, E.E. Fullerton: Nature Matter. Vol. 2 (2003) p.112.

Google Scholar

[3] O. Hellwig, A. Berger, E.E. Fullerton: J. Magn. Magn. Mater. Vol. 290-291 (2005), p.1.

Google Scholar

[4] T. Ślezak, W. Karaś, K. Krop, M. Kubik, D. Wilgocka- Ślezak, N. Spiridis, J. Korecki: J. Magn. Magn. Mater. Vol. 240 (2002), p.362.

DOI: 10.1016/s0304-8853(01)00802-2

Google Scholar

[5] M. Źoladź, T. Ślezak, D. Wilgocka-Ślezak, N. Spiridis, J. Korecki, T. Stobiecki, K. Röll: J. Magn. Magn. Mater. Vol. 272-276 (2004), p.1253.

DOI: 10.1016/j.jmmm.2003.12.087

Google Scholar

[6] M.M.H. Willekens et al: MRS Symposia Proceedings No. 313 (Materials Research Society, Pittsburg 1993), p.129.

Google Scholar

[7] U.K. Rößler, A.N. Bogdanov: J. Magn. Magn. Mater. Vol. 269 (2004), p. L287.

Google Scholar

[8] M.N. Babich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff: Phys. Rev. Lett. Vol. 61 (1988), p.2472.

Google Scholar

[9] S.S.P. Parkin, N. More, K.P. Roche: Phys. Rev. Lett. Vol. 64 (1990), p.2304.

Google Scholar

[10] E.E. Fullerton, M.J. Conover, J.E. Mattson, C.H. Sowers, and S.D. Bader: Phys. Rev. B. Vol. 48 (1993), p.15755.

Google Scholar

[11] M.A. Tomaz W.J. Antel Jr., W.L. O'Brein, G.R. Harp: Phys. Rev.B. Vol. 55 (1997), p.3716.

Google Scholar

[12] R.W. Wang and D.L. Mills: Phys. Rev. Lett. Vol. 72 (1994), p.920.

Google Scholar

[13] S.G.E. te Velthuis, G.P. Felcher, J.S. Jiang, C.S. Nelson, A Berger, and S.D. Bader: Appl. Phys. Lett. Vol. 75 No 26 (1999), p.4174.

DOI: 10.1063/1.125573

Google Scholar

[14] J.S. Jiang, G.P. Felcher, A. Inomata, R. Goyette, C, Nelson, and S.D. Bader: Phys. Rev. B Vol. 9653 (2000), p.61.

Google Scholar

[15] S.G.E. te Velthuis, J.S. Jiang, and G.P. Felcher: Appl. Phys. Lett. Vol. 77, No. 14 (2000), p.2222.

Google Scholar

[16] L. Lazar, J.S. Jiang, G.P. Felcher, A. Inomata, S.D. Bader: J. Magn. Magn. Mater. Vol. 223 (2001), p.299.

Google Scholar

[17] P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan: Electron microscopy of thin crystals (Butterworths, London 1965).

Google Scholar