Local Structure and Dynamic Properties of Mn Substituted Manganites Studied by EXAFS and Anelastic Spectroscopy

Article Preview

Abstract:

We present extended X-ray absorption fine structure (EXAFS) and anelastic spectroscopy measurements performed on (La0.63Ca0.37)(Mn1-yMy)O3 manganites (M = Cr or Ni and y = 0.03, 0.08). The ferromagnetic metallic phase maintains its long-range character even after Mn substitution with non- Jahn-Teller ions, but both the doping species (Ni or Cr) lower the Curie temperature and broaden the magnetic transition. EXAFS suggests the presence of distorted insulating zones in the framework of phase inhomogeneity. Moreover, a strong dependence of the real part of the complex dynamic Young’s modulus and of the elastic energy-loss coefficient on the Mn substitution is evidenced by the anelastic spectroscopy spectra. These results confirm the correlation among local lattice disorder, dynamic and magnetic degrees of freedom and also evidence the possibility to tune manganites physical properties acting on their chemical composition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Schiffer et al., Phys. Rev. Lett. Vol. 75, (1995), p.3336.

Google Scholar

[2] C. Zener, Phys. Rev. Vol. 82 (1951), p.403.

Google Scholar

[3] A. J. Millis et al., Phys. Rev. Lett. Vol. 74 (1995), p.5144.

Google Scholar

[4] J. M. De Teresa et al., Nature Vol. 386 (1997), p.256.

Google Scholar

[5] A. Moreo et al., Science Vol. 283 (1999), p. (2034).

Google Scholar

[6] M. Fäth et al., Science Vol. 285 (1999), p.1540.

Google Scholar

[7] S. J. L. Billinge et al., Phys. Rev. B Vol. 62 (2000), p.1203.

Google Scholar

[8] M. Uehara et al., Nature Vol. 399 (1999), p.560.

Google Scholar

[9] T. Katsufuji et al., J. Phys. Soc. Jap. Vol. 68 (1999), p.1090.

Google Scholar

[10] H. Oshima et al., Phys. Rev. B Vol. 63 (2001), p.094420.

Google Scholar

[11] J. Dho et al., Phys. Rev. Lett. Vol. 89 (2002), p.027202.

Google Scholar

[12] B. Lengeler, P. Eisenberger, Phys. Rev B Vol. 21 (1980) p.4507.

Google Scholar

[13] A. S. Nowick, B. S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York, USA 1972).

Google Scholar

[14] H. Song et al., J. Appl. Phys. Vol. 89 (2001) p.3398.

Google Scholar

[15] Young Sun et al., J. Magn. Magn. Mat. Vol. 231 (2001), p.195.

Google Scholar

[16] C. Castellano et al., Solid State Commun. Vol. 136, (2005) p.244.

Google Scholar

[17] Martinelli et al., Phys. Rev. B Vol. 73 (2006), p.064423.

Google Scholar

[18] C. Meneghini et al., J. Phys. Cond. Matter Vol. 14 (2002) p. (1967).

Google Scholar

[19] F. Cordero et al., Phys. Rev. B Vol. 65 (2002) p.012403.

Google Scholar

[20] C. Castellano, et al., Sol. Stat. Commun. Vol. 129 (2004) p.143.

Google Scholar