'Top Down' Approaches for the Study of Single-Cells: Micro-Engineering and Electrical Phenotype

Article Preview

Abstract:

Single-cell analysis is a very important field of research and is currently at the frontier of physical and biological sciences. Understanding how the phenotype of a single-cell arises from its genotype is a complex topic. Currently, the prevailing paradigm to analyze cellular functions is the study of biochemical interactions using fluorescence based imaging systems. However, the elimination of the labelling process is highly desirable to improve the accuracy of the analysis. Living cells are electromagnetic units; in as much they use electric mechanisms to control and regulate dynamic processes involved in inter alia signal transduction, metabolism, proliferation and differentiation. Recent developments in micro- and nanofabrication technologies are offering great opportunities for the analysis of single cells; the combination of micro fluidic environments, nano electrodes/wires and ultra wide band electromagnetic engineering will soon make possible the investigation of local (submicrometer scale) dynamic processes integrating several events at different time scales. In the paper, we present recent approaches which aim at investigating singlecells with the help of MEMS and NEMS (Micro and Nano Electro Mechanical Systems) and ultra wide band (DC-THz) electromagnetic characterization techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-106

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science, Vol. 270, (1995), pp.467-470.

Google Scholar

[2] B. Ren, F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin et al., Science, Vol. 290, (2000), pp.2306-2309.

DOI: 10.1126/science.290.5500.2306

Google Scholar

[3] A.C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. Michon, C.M. Cruciat et al., Nature, Vol. 415, (2002), pp.141-147.

Google Scholar

[4] R.E. Dolmetsch, K. Xu, R.S. Lewis, Nature, Vol. 392, (1998), pp.933-936.

Google Scholar

[5] W.J. Blake, M. Kaern, C.R. Cantor, J.J. Collins, Nature, Vol. 422, (2003), pp.633-637.

Google Scholar

[6] K. Truong, M. Ikura, Curr. Opin. Struct. Biol., Vol. 11, (2001), pp.573-578.

Google Scholar

[7] B. Marshall, Nature, Vol. 423, pp.190-193, (2003).

Google Scholar

[8] R. Wightman, Science, Vol. 311, pp.1570-1574, (2006).

Google Scholar

[9] E. Lauwers, J. Suls, W. Gumbrecht, D. Maes, G. Gielen, and W. Sansen, IEEE J. Solid-State Circuits, Vol. 36, (2001), p.2030-(2038).

DOI: 10.1109/4.972154

Google Scholar

[10] M. J. Vellekoop, Ultrason, Vol. 36, (1998), pp.7-14.

Google Scholar

[11] J. Auge, P. Hauptmann, J. Hartmann, S. Rosler, and R. Lucklum, Sens. Actuators B, Vol. 24, (1995), pp.43-48.

Google Scholar

[12] R. Pethig, Dielectric and electronic properties of biological materials, New York: Wiley, (1979).

Google Scholar

[13] R. Pethig, D.B. Kell, Phys Med Biol., Vol. 32, (1987), pp.933-970.

Google Scholar

[14] K.R. Foster, H.P. Schwan, Crit. Rev. Biomed. Eng., Vol. 17, (1989), pp.25-104.

Google Scholar

[15] C.L. Davey, D.B. Kell, The dielectric properties of cells and tissues what can they tell us about the mechanisms of field/cell interactions, In M.E. O'Connor, R.H.C. Bentall, J.C. Monahan (eds), Emerging Electromagnetic Medicine, Berlin, Heidelberg, New York, Springer, (1990).

DOI: 10.1007/978-1-4612-3386-2_2

Google Scholar

[16] D.B. Kell, R.D. Astumian, H.V. Westerhoff, Ferroelectrics, Vol. 86, (1988), pp.59-78.

Google Scholar

[17] A.M. Woodward, D.B. Kell, Bioelectrochemistry and Bioenergetics, Vol. 24, (1990), pp.83-100.

Google Scholar

[18] D.R. Nawarathna, J.R. Claycomb, J.H. Miller, M.J. Benedik, Appl. Phys. Lett., Vol. 86, (2004), pp.23902-23904.

Google Scholar

[19] S.M. Bezrukov and I. Vodyanoy , Noise in Biological Membranes and Relevant Ionic Systems, in Biomembrane Electrochemistry, Advances in Chemistry Series, Vol. 235, edited by M. Blank and I. Vodyanoy (American Chemical Society, Washington, DC), (1994).

DOI: 10.1021/ba-1994-0235.ch017

Google Scholar

[20] K. Wang, D. M. Mittleman, Nature, Vol. 432, (2004), pp.376-379.

Google Scholar

[21] B. Bocquet, N.E. Bourzgui, Y. Guhel, V. Mille, C. Vivien and P. Supiot, Proc. SPIE, San Jose (USA), Vol. 5345, (2004), pp.118-129.

DOI: 10.1117/12.530790

Google Scholar

[22] T. Gowrishankar and C. Weaver, PNAS, Vol. 100, (2003), pp.3203-3208.

Google Scholar