Mechanical Properties of Si3N4-SiC Composites Sintered by HPHT Method

Article Preview

Abstract:

Three types: micro-, submicro- and nano-structured Si3N4-SiC composites have been obtained by High Pressure-High Temperature (HPHT) sintering. Density, Young modulus, hardness and fracture toughness have been measured. Composites obtained from sub-micron powders are characterized by better mechanical properties than composites obtained from nanopowders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

396-401

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Peng, Spark Plasma Sintering of Si3N4-Based Ceramics, Doctoral Dissertation, Department of Inorganic Chemistry, Stockholm University (2004).

Google Scholar

[2] H.O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, Westwood, New Jersey (1996).

Google Scholar

[3] D. W. Richerson, Advanced ceramic materials, in J. K. Wessel (edt), Handbook of advanced materials, John Wiley & Sons, Inc., Hoboken, New Jersey (2004).

Google Scholar

[4] F. Eblagon, B. Ehrle, T. Graule, J. Kuebler, Development of silicon nitride/silicon carbide composites for wood-cutting tools, Journal of the European Ceramic Society 27 (2007) 419-428.

DOI: 10.1016/j.jeurceramsoc.2006.02.040

Google Scholar

[5] S.M. Lee, T.W. Kim, H.J. Lim, C. Kim, Y.W. Kim, K.S. Lee, Mechanical Properties and Contact Damages of Nanostructured Silicon Carbide Ceramics, Journal of the Ceramic Society of Japan 15/5 (2007) 304-309.

DOI: 10.2109/jcersj.115.304

Google Scholar

[6] S. Suyama, T. Kameda, Y. Itoh, Development of high-strengths reaction-sintered silicon carbide, Diamond and Related Materials, 12 (2003) 1201-1204.

DOI: 10.1016/s0925-9635(03)00066-9

Google Scholar

[7] K. Niihara, T. Kusunose, S. Kohsaka, T. Sekino, Y. -H. Choa, Multi-Functional Ceramic Composites trough Nanocomposite Technology, Key Engineering Materials 161-163 (1999) 527-534.

DOI: 10.4028/www.scientific.net/kem.161-163.527

Google Scholar

[8] A. W. Weimer, R. K. Bordia, Processing and properties of nanophase SiC/Si3N4 composites, Composites Part B: Engineering, 30/7 (1999) 647-655.

DOI: 10.1016/s1359-8368(99)00039-6

Google Scholar

[9] A. Bellosi, Si3N4/SiC Ceramic Nanocomposites, Materials Science Forum, 195 (1995) 79-86.

Google Scholar

[10] M. Sternitzke, Review: Structural Ceramic Nanocomposites, Journal of the European Ceramic Society 17 (1997) 1061-1082.

DOI: 10.1016/s0955-2219(96)00222-1

Google Scholar

[11] B. Derby, Ceramic nanocomposites: mechanical properties, Current Opinion in Solid State and Materials Science, 3/5 (1998) 490-495.

DOI: 10.1016/s1359-0286(98)80013-2

Google Scholar

[12] H. Mabuchi, H. Tsuda, T. Ohtsuka, T. Matsui, K. Morii, In-situ synthesis of Si3N4 - SiC composites by reactive hot-pressing, High Temperatures - High Pressures 31 (5) (1999) 499-506.

DOI: 10.1068/htrt179

Google Scholar

[13] J. Wan et al., Silicon nitride/silicon carbide nano-nano composites, United States Application 20040179969.

Google Scholar

[14] P. Klimczyk, D. Vallauri, P. Figiel, L. Jaworska, I. Amato, Development of TiC – TiB2 nanoceramic composites obtained from metastable powders by HPHT method, The 24th International Manufacturing Conference (IMC 24) August 2007, Waterford Ireland, Proceedings of the IMC24, 2 (2007).

Google Scholar

[15] Company data sheets from: H.C. Starck Ceramics GmbH& Co. KG, Ceradyne Inc. and Saint-Gobain Advanced Ceramics.

Google Scholar