Synthesis of Bi6Fe2Ti3O18 Aurivillius Phase by Wet Chemical Methods

Article Preview

Abstract:

The Aurivillius phases in the Bi-Fe-Ti-O system showing multiferroic properties arouse an increasing interest due to their wide potential applications in electronics. These compounds were usually prepared by high temperature solid-state reaction method using respective oxide powders mixed in required stoichiometry. An excess of bismuth oxide was often added due to its evaporation during heat treatment. The mixture of the oxide powders were calcined in air between 700 and 900°C for several or even for several dozen hours. In the present paper the Bi6Fe2Ti3O18 Aurivillius phase was prepared by direct solid state reaction between respective oxides and by co-precipitation – calcination method. Mixture of the oxides and co-precipitated gels were calcined at different temperatures and X-ray diffraction analysis was used for identification of phase composition of the products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-169

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Schmid: Int. J. Magn. Vol. 4 (1973), p.337.

Google Scholar

[2] T. Goto, T. Kimura, G. Lawes, A.P. Ramirez and Y. Tokura: Phys. Rev. Lett. Vol. 92 (2004), p.257201.

Google Scholar

[3] T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer and M. Fiebig: Nature Vol. 430 (2004), p.541.

DOI: 10.1038/nature02728

Google Scholar

[4] V.J. Folen, G.T. Rado and E.W. Stalder: Phys. Rev. Lett. Vol. 6 (1961), p.607.

Google Scholar

[5] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh: Science Vol. 299 (2003), p.1719.

DOI: 10.1126/science.1080615

Google Scholar

[6] J. Dho, C.W. Leung, J.L. MacManus-Driscoll and M.G. Blamire: J. Cryst. Growth Vol. 267 (2004), p.548.

Google Scholar

[7] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura: Nature Vol. 426 (2003), p.55.

DOI: 10.1038/nature02018

Google Scholar

[8] B. Aurivillius: Arki. Kemi. Vol. 1 (1949), p.463.

Google Scholar

[9] G.A. Smolenskii, V.A. Isupov and A.I. Agranovskaya: Fiz. Tverd. Tela Vol. 1 (1959), p.169.

Google Scholar

[10] E.C. Subbarao: Phys. Rev. Vol. 122 (1961), p.804.

Google Scholar

[11] E.C. Subbarao: J. Am. Ceram. Soc. Vol. 45 (1962), p.166.

Google Scholar

[12] T. Takenaka and K. Sakata: J. Appl. Phys. Vol. 55 (1984), p.1092.

Google Scholar

[13] A. Srinivas, M. Mahesh Kumar, S.V. Suryanarana and T. Bhimasankaram: Mater. Res. Bull. Vol. 34 (1999), p.989.

Google Scholar

[14] N.A. Lomanova, M.I. Morozov, V.L. Ugolkov and V.V. Gusarov: Inorg. Mater. Vol. 42 (2006), p.189.

Google Scholar

[15] M.I. Morozov and V.V. Gusarov: Inorg. Mater. Vol. 38 (2002), p.723.

Google Scholar

[16] S.K. Patri, R.N.P. Choudhary and B.K. Samantaray: J. Alloys Compd. Vol. 459 (2008), p.333.

Google Scholar

[17] A. Srinivas, D. -W. Kim, K.S. Hong and S.V. Suryanarayan: Mater. Res. Bull. Vol. 39 (2004), p.55.

Google Scholar

[18] X.Y. Mao, W. Wang and X.B. Chen: Solid State Comm. Vol. 147 (2008), p.186.

Google Scholar

[19] H.A. Hartwig: Zeit. anorg. allg. Chem. Vol. 444 (1978), p.151.

Google Scholar