Magnetic Properties of Cobalt and Manganese Oxide Spinel Ceramics

Article Preview

Abstract:

Magnetic susceptibility measurements, magnetization and neutron diffraction results at low temperature for cobalt and manganese oxide spinel ceramics are presented. The Curie temperature varies similarly with the sample composition in ceramics and powders. The experimental molar Curie constant variation is explained by the presence of Co2+, CoIII, Mn3+ and Mn4+, and possibly Co3+ in the octahedral sites for the cobalt rich phases. The magnetic moments of the cations in tetrahedral and octahedral sites are not collinear and the global magnetization is oriented in a third direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Bordeneuve, C. Tenailleau, S. Guillemet-Fritsch, R. Smith, E. Suard and A. Rousset: Solid State Sci. Vol. 12 (2010), p.379.

DOI: 10.1016/j.solidstatesciences.2009.11.018

Google Scholar

[2] A. S. Borovik-Romanov, M. P. Orlova: Soviet Physics-JETP Vol. 5 (1957), p.1023.

Google Scholar

[3] V. Baron, J. Gutzmer, H. Rundolf, R. Tellgren: Am. Mineral. Vol. 83 (1998), p.786.

Google Scholar

[4] W. L. Roth: J. Phys. Chem. Solids Vol. 25 (1964), p.1.

Google Scholar

[5] E. W. Gorter: Philips Research Reports Vol. 9 (1954), p.295.

Google Scholar

[6] A. Navrotsky, O. J. Kleppa: J. Inorg. Nuclear Chem. Vol. 29 (1967), p.2701.

Google Scholar

[7] J. S. Griffith: The theory of transition-metal ions. Cambridge University Press (1961).

Google Scholar

[8] W. L. Roth : Journal de Physique Vol. 25 (1964), p.507.

Google Scholar

[9] B. Boucher, R. Buhl, R. Di Bella, M. Perrin : Journal de Physique Vol. 31 (1970), p.113.

Google Scholar

[10] S. Tamura : Physica B Vol. 190 (1993), p.150.

Google Scholar

[11] H. Bordeneuve, S. Guillemet-Fritsch, A. Rousset, S. Schuurman, V. Poulain : J. Solid State Chem. Vol. 182 (2009), p.396.

DOI: 10.1016/j.jssc.2008.11.004

Google Scholar

[12] H. Bordeneuve, A. Rousset, C. Tenailleau and S. Guillemet-Fritsch : J. Therm. Anal. Calorim., DOI: 10. 1007/s10973-009-0557-7.

Google Scholar

[13] E. Rios, O. Pena, T. Guizouarn and J.L. Gautier: Phys. Stat. Sol. C DOI : 10. 1002/pssc. 200304888.

Google Scholar

[14] H.T. Zhang and X.H. Chen : Nanotechnology Vol. 17 (2006), p.1384.

Google Scholar

[15] C. Campos, G. Pecchi, Y. Moreno, C. Moure, V. Gil, P. Barahona and O. Pena: Bol. Soc. Esp. Ceram. Vol. 47 (2008), p.207.

Google Scholar

[16] M. Marysko, Z. Jirak, K. Knizek and C. Autret-Lambert: J. Mag. Mag. Mater. Vol. 322 (2010), p.1392.

Google Scholar

[17] D. G. Wickham and W. J. Croft: J. Phys. Chem. Solids Vol. 7 (1958), p.351.

Google Scholar

[18] A. Michel : Phénomènes magnétiques et structure. Paris, Masson et Cie (1966).

Google Scholar

[19] P. Poix : Annales de Chimie, Paris Vol. 9 (1964), p.261.

Google Scholar

[20] J. L. Baudour, F. Bouree, M. A. Fremy, R. Legros, A. Rousset, B. Gillot: Physica B Vol. 180 (1992), p.97.

DOI: 10.1016/0921-4526(92)90672-f

Google Scholar

[21] B. Boucher, R. Buhl, M. Perrin: J. Appl. Phys. Vol. 40 (1969), p.1126.

Google Scholar

[22] M. Beley, L. Padel, J. C. Bernier: Annales de Chimie Vol. 3 (1978), p.429.

Google Scholar