Electrical Properties of Nb-Doped and Nb-Mn-Codoped BaTiO3-(Bi0.5Na0.5)TiO3 Lead-Free PTCR Ceramics

Article Preview

Abstract:

Nb-doped and Nb-Mn-codoped (1-xmol%)BaTiO3-xmol%(Bi0.5Na0.5)TiO3 (BBNTx) lead-free positive temperature coefficient of resistivity (PTCR) ceramics were prepared by the conventional solid state reaction method. The XRD patterns indicated that all BBNTx samples formed a single perovskite structure with tetragonal phase. 0.25 mol% Nb doped BBNT1 ceramic, sintered at 1330°C for 1h in air, had low room-temperature resistivity (ρ25) of 80 Ω•cm and a high resistivity jump (maximum resistivity [ρmax]/minimum resistivity [ρmin]) of 4.2 orders of magnitude with Tc about 152°C. The Nb-doped BBNTx (10≤x≤60) ceramics also showed distinct PTC effect with Tc between 185 and 232°C by sintering in N2, which was shut off when samples were cooled to a low temperature. In addition, The Nb-Mn-codoped BBNT1 ceramics exhibited higher resistivity jump than the single Nb-doped ones, with increasing the room-temperature resistivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-142

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.W. Haaijman, R.W. Dam and H.A. Klasens: Ger. Patent No. 929350, 23 June (1955).

Google Scholar

[2] B. Huybrechts, K. Ishizaki and M. Takata: J. Mater. Sci Vol. 30 (1995), p.2463.

Google Scholar

[3] O. Saburi: J. Phys. Soc. Jpn Vol. 14 (1959), p.1159.

Google Scholar

[4] F.D. Morrison, D.C. Sinclair and A.R. West: J. Am. Ceram. Soc Vol. 84(2) (2001), p.474.

Google Scholar

[5] X.X. Wang, H.L.W. Chan and C.L. Choy: J. Eur. Ceram. Soc Vol. 24 (2004), p.1227.

Google Scholar

[6] H. Takeda, T. Shimada, Y. Katsuyama and T. Shiosaki: J. Electroceram Vol. 22 (2009), p.263.

Google Scholar

[7] P.H. Xiang, H. Takeda and T. Shiosaki: Appl. Phys. Lett Vol. 91 (2007), pp.162904-1.

Google Scholar

[8] H. Takeda, W. Aoto and T. Shiosaki: Appl. Phys. Lett Vol. 87 (2005), pp.102104-1.

Google Scholar

[9] T. Shimada, K. Touji, Y. Katsuyama, H. Takeda and T. Shiosaki: J. Eur. Ceram. Soc Vol. 27 (2007), p.3877.

Google Scholar

[10] P.H. Xiang, H. Harinaka, H. Takeda, T. Nishida, K. Uchiyama and T. Shiosaki: J. Appl. Phys Vol. 104 (2008), pp.094108-1.

Google Scholar

[11] H. Ueoka: Ferroelectrics Vol. 7 (1974), p.351.

Google Scholar

[12] T. Matsuoka, Y. Matsuo, H. Sasaki and S. Hayakawa: J. Am. Ceram. Soc Vol. 55(2) (1972), p.108.

Google Scholar

[13] Y.M. Chiang and T. Takagi: J. Am. Ceram. Soc Vol. 73(11) (1990), p.3278.

Google Scholar

[14] H.M. Al-allak, A.W. Brinkman, G.J. Russell and J. Woods: J. Appl. Phys Vol. 63(9) (1988), p.4530.

Google Scholar

[15] C-C. Diao, C-F. Yang and C-J. Huang: J. Alloys Compd Vol. 487 (2009), p.321.

Google Scholar

[16] H.M. Chan, M.P. Harmer and D.M. Smyth: J. Am. Ceram. Soc Vol. 69(6) (1986), p.507.

Google Scholar

[17] W. Heywang: Solid-State Electron Vol. 3 (1961), p.51.

Google Scholar

[18] M. Drofenik: J. Am. Ceram. Soc Vol. 70(5) (1987), p.311.

Google Scholar

[19] G.H. Jonker: Solid-State. Electron Vol. 7 (1964), p.895.

Google Scholar

[20] K. Datta, K. Roleder and P.A. Thomas: J. Appl. Phys Vol. 106 (2009), pp.123512-1.

Google Scholar

[21] T.R.N. Kutty and P. Murugaraj: Mater. Lett Vol. 3(5-6) (1985), p.195.

Google Scholar