Geopolymers as Waste Encapsulation Materials: Impact of Anions on the Materials Properties

Article Preview

Abstract:

One of the most promising applications of geopolymers is their use as waste encapsulating matrix. These binders are indeed compatible with aqueous waste streams and capable of activating several chemical and physical immobilization mechanisms for a wide range of inorganic waste species. Several works have investigated the immobilization of cations, mainly heavy metals or radioactive wastes, but very few studies are taking counterions, namely anions, into account. The aim of this work is to experimentally investigate the impact of anions with different valences on the materials’ properties in regard to the requirements of an industrial process at ambient or slightly elevated temperature: among others setting time, maximum achievable compressive strength or resistance to leaching. The modifications caused by the introduction of monovalent and divalent anions, such as sulphate and nitrate, are also monitored in term of mineralogy, porosity and microstructure. Their immobilization seems to be related to the advancement of geopolymerization reaction. On another hand, depending on the alkali ions used in the activation solution, the anionic species considered may also enhance the precipitation of some zeolites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-179

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Davidovits, Journal of Thermal Analysis Vol. 37 (1991), pp.1633-1656.

Google Scholar

[2] A. Palomo and M. Palacios, Cem. Conc. Res. Vol. 33(2) (2003), pp.289-295.

Google Scholar

[3] A.M. Fernandez Jiminez, et al., Cem. Conc. Comp. Vol. 26(8) (2004), pp.1001-1006.

Google Scholar

[4] A. Fernandez-Jimenez et al., Journal of Nuclear Materials Vol. 346(2-3) (2005), pp.185-193.

Google Scholar

[5] S. Berger, F. Frizon and C. Joussot-Dubien, Adv. in App. Ceram. Vol. 108 (2009), pp.412-417.

Google Scholar

[6] J.Z. Xu et al., Mat. Lett. Vol. 60(6) (2006), pp.820-822.

Google Scholar

[7] C. Cau Dit Coumes and S. Courtois, Cem. Conc. Res. Vol. 33(3) (2003), pp.305-316.

Google Scholar

[8] R. Kumar, et al., Nature Vol. 381 (1996), pp.298-300.

Google Scholar

[9] W.K.W. Lee and J.S.J. Van Deventer, Cem. Conc. Res. Vol. 32 (2002), pp.577-584.

Google Scholar

[10] W.K.W. Lee and J.S.J. Van Deventer, Indus. Eng. Chem. Res. Vol. 41 (2002), pp.4550-4558.

Google Scholar

[11] W.K.W. Lee and J.S.J. Van Deventer, Coll. and Surf. A: Physicochem. and Eng. Asp. Vol. 211 (2002), pp.115-126.

Google Scholar

[12] J.L. Provis, G.C. Lukey, and J.S.J. Van Deventer, Chem. of Mat. Vol. 17 (2005), pp.3075-3085.

Google Scholar

[13] A. Palomo et al., Cem. Conc. Res. Vol. 29(7) (1999), pp.997-1004.

Google Scholar

[14] J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and G.C. Lukey, Chem. Eng. Journ. Vol. 89 (2002), pp.63-73.

Google Scholar

[15] M. Rowles and B. O'Connor, J. of Mat. Chem. Vol. 13(5) (2003), pp.1161-1165.

Google Scholar

[16] A. Palomo and J.I. Lopez de la Fuente, Cem. Conc. Res. Vol. 33(2) (2003), pp.281-288.

Google Scholar

[17] H. Xu and J.S.J. van Deventer, Int. J. of Min. Process. Vol. 59 (2000), pp.247-266.

Google Scholar

[18] W.M. Kriven, M. Gordon and J. Bell. Geopolymers: Nanoparticulate, Nanoporous Ceramics made under Ambient Conditions. in Microscopy and Microanalysis'04 (Proc. 62ndAnnual Meeting of Microscopy Society of America). (2004).

DOI: 10.1017/s1431927604886719

Google Scholar

[19] C.K. Yip, G.C. Lukey, and J.S.J. van Deventer, Cem. Conc. Res. Vol. 35(9) (2005), pp.1688-1697.

Google Scholar

[20] V.F.F. Barbosa, K.J.D. MacKenzie and C. Thaumaturgo, Int. J. of Inorg. Mat. Vol. 2(4) (2000), pp.309-317.

Google Scholar

[21] P.S. Singh, et al., Mat. Sc. and Eng. A Vol. 396 (2005), pp.392-402.

Google Scholar

[22] P. De Silva and K. Sagoe-Crenstil, Cem. Conc. Res. Vol. 38(6) (2008), pp.870-876.

Google Scholar

[23] S.D. Kindare and D.L. Pole, Inorg. Chem. Vol. 31 (1992), pp.4558-4563.

Google Scholar

[24] R.A. Fletcher et al., J. Eur. Ceram. Soc. Vol. 25(9) (2005), pp.1471-1477.

Google Scholar

[25] M. Criado et al., Cem. Conc. Res. Vol. 37 (2007), pp.671-679.

Google Scholar

[26] D.W. Breck, Zeolite Molecular Sieves : Stucture, Chemistry and Use. (Wiley Interscience, USA 1974).

Google Scholar

[27] S. Bosnar, T. Antonic-Jelic, and J. Bronic, J. Crystal Growth Vol. 267 (2004), pp.270-282.

Google Scholar