How to Assess the Environmental Sustainability of Geopolymers? A Live Cycle Perspective

Article Preview

Abstract:

Geopolymers as an alternative binder system gains growing attention in research and development. Outstanding technical properties like high strength, high acid resistance, or high temperature resistance can be unerringly achieved. Thus geopolymers are not only suitable for the development of building products, but are also interesting binder systems for ceramic applications. Besides the technical performance of geopolymers, which is well investigated, only limited scientific knowledge exists about the environmental sustainability of geopolymers [1]. Due to the wide range of suitable raw materials and hence resulting, different geopolymer compositions for distinct application fields a generally statement about the environmental implications cannot be addressed to geopolymers. A more detailed analysis and assessment is needed, to provide more diversified statements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-191

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Weil, A. Buchwald, K. Dombrowski, W.R. Poganietz: Managing emerging technologies – Sustainable design for geopolymers. 17th Conference of the Society of Environmental Toxicology and Chemistry (SETAC) Europe: Multiple stressors for the environment - present and future challenges and perspectives. Porto (2007).

Google Scholar

[2] M. Weil, A. Buchwald, K. Dombrowski: Geopolymer Binders. Teil 3: Ökologische und ökonomische Analysen von Geopolymerbetonmischungen für Außenbauteile. ZKG International - accepted.

Google Scholar

[3] UNEP SETAC: Guidelines for social life cycle assessment of products. United Nations Environmental Programme (2009).

Google Scholar

[4] ISO 14040 ff: Environmental management – Life cycle assessment – Principles and framework. International Organization for Standardization (2006).

Google Scholar

[5] M. Weil, K. Dombrowski, A. Buchwald: Life cycle analysis of geopolymers. In Geopolymers – Structure, processing, properties and industrial applications. Provis, L., Deventer, J. (Eds. ). Woodhead Publishing, Cambridge (2009), pp.194-210.

DOI: 10.1533/9781845696382.2.194

Google Scholar

[6] J. Davidovits: http: /www. geopolymer. org/news/first-supplier-of-geopolymer-raw-material , last call 04/(2010).

Google Scholar

[7] Th. Merkel: Erzeugung von Eisenhüttenschlacken im Jahr 2008. In Institut für Baustoff Forschung Report (2009), 16 (1). Personal communication with Th. Merkel - preliminary version of Erzeugung von Eisenhüttenschlacken im Jahr 2009.

Google Scholar

[8] E.I. Diaz, E.N. Allouche, S. Eklund: Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89 (2010), pp.992-996.

DOI: 10.1016/j.fuel.2009.09.012

Google Scholar

[9] Dombrowski, K., Buchwald, A., Weil, M.: The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. Journal of Materials Science (2007), 42 (9), pp.3033-3043.

DOI: 10.1007/s10853-006-0532-7

Google Scholar

[10] J. Xie, J. Yin, J. Chen, J. Xu,: Study on the Geopolymer Based on Fly Ash and Slag, International Conference on Energy and Environment (2009), vol. 3, pp.578-581.

DOI: 10.1109/iceet.2009.607

Google Scholar

[11] http: /www. eurochlor. org/makingchlorine.

Google Scholar

[12] H. Li, D. Xu : The future resources for eco-building materials: II. Fly ash and coal waste. Journal of Wuhan University of Technology - Materials Science Edition (2009), 24 (4), pp.667-672.

DOI: 10.1007/s11595-009-4667-7

Google Scholar

[13] K. Burger: Kaolin-Kohlentonsteine im flözführenden Oberkarbon des Niederrheinisch-Westfälischen Steinkohlenreviers. Geologische Rundschau (1980), 69 (2).

DOI: 10.1007/bf02104551

Google Scholar

[14] F. Pacheco-Torgal, J. P. Castro-Gomes, S. Jalali: Investigations on mix design of tungsten mine waste geopolymeric binder. Construction and Building Materials (2008), 22, p.1939–(1949).

DOI: 10.1016/j.conbuildmat.2007.07.015

Google Scholar

[15] D. S. Perera, R. L. Trautman: Geopolymers with the Potential for Use as Refractory Castables. The Azo Journal of Materials Online - AZojomo (ISSN 1833-122X) - (2006), vol. 2.

Google Scholar