Recycling of Industrial Wastewater by its Immobilization in Geopolymer Cement

Article Preview

Abstract:

In this work, wastewater from Teva Pharmaceutical Industries Ltd., which comprises several organic and inorganic compounds, was solidified in a geopolymer matrix. The addition of wastewater to the polymerization mixture of fly ash based geopolymers yielded a high compressive strength of 50-75 MPa that is similar to that of wastewater-free geopolymer. The leaching of organic compounds from the matrix was examined and it was found to be negligible, about 0.2%wt, and comparable to the amount that leached from a geopolymer matrix made without wastewater. The results indicate that the immersion temperature and the time of immersion have negligible influences on carbon leaching.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-185

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Tchobanolous, F.L. Burton, H.D. Stensel, Wastewater Engineering Treatment and Reuse, 4th Ed., McGraw-Hill (2003).

Google Scholar

[2] A. Sonune, R. Ghate: Desalination Vol 167 (2004), p.55.

Google Scholar

[3] B. Van der Bruggen, L. Braeken: Desalination Vol 188 (2006), p.177.

Google Scholar

[4] M.D. Bermejo, M.J. Cocero: Journal of Hazardous Material Vol 137 (2006), p.965.

Google Scholar

[5] A. Bozzi, T. Yuranova, P. Lais, J. Kiwi: Water Research Vol 39 (2005), p.1441.

Google Scholar

[6] K. Laursen, L.D. Benefield, C.W. Randall, Biological Process Design for Wastewater Treatment, Prentice-Hall Inc, (1980).

Google Scholar

[7] M. Izquierdo, X. Querol, C. Phillipart, Charles, D. Antenucci: World of Coal Ash: Science, Applications and Sustainability, Proceedings, 3rd, Lexington, KY, United States (2009).

Google Scholar

[8] A. Fernandes-Jimenez, A. Palomo: Cem. Concr. Res. Vol 35 (2005), p. (1984).

Google Scholar

[9] J. Davidovits: J. Therm. Anal. Vol 37 (1991), p.1633.

Google Scholar

[10] A. Palomo, M. Grutzeck, M. Blanco: Cem. & Con. Res. Vol 29 (1999), p.1323.

Google Scholar

[11] H. Xu, J. van Deventer: Int. J. Min. Proc. Vol 59 (2000), p.247.

Google Scholar

[12] H. Xu, J. van Deventer: Min. Eng. Vol 15 (2002), p.1131.

Google Scholar

[13] C. Fernandez-Pereira, Y. Luna, X. Querol, D. Antenucci, J. Vale: Fuel Vol 88 (2008), p.1185.

Google Scholar

[14] T. Hanzlicek, M. Steinerova, P. Straka: J. Am. Ceram. So. Vol 89(11) (2006), p.3541.

Google Scholar

[15] D. Tavor, A. Wolfson, A. Shamaev, A. Shvarzman: Ind. Eng. Chem. Res. Vol 46 (2007), p.6801.

DOI: 10.1021/ie0616996

Google Scholar

[16] D. Khale, R. Chaudhary, Rubina: J. oSo. Waste Tech. & Man. Vol 33 (3) (2007), p.148.

Google Scholar

[17] J. Zhang, J.L. Provis, D. Feng, J. s. j. van Deventer: J. Haz. Mat. Vol 157(2-3) (2008), p.587.

Google Scholar

[18] J. Davidovits: J. Mater. Educ. Vol 16 (1994), p.91.

Google Scholar

[19] W. Sun, Y. Zhang, W. Lin, Z. Liu: Cement & concrete Res. (2004) Vol 34, p.935.

Google Scholar

[20] A. Shvarzman , K. Kovler, G. Grader, G. Shter: International Symposium on Non-Traditional Cement & Concrete, (2002), Brno.

Google Scholar

[21] J. Swanepoel, S. Strydom: App. Geochem. Vol 17 (2002), p.1143.

Google Scholar

[22] S. Zhang, K. Gong, J. Lu: Mat. Lett. Vol 58 (2004), p.1292.

Google Scholar