Mechanical Behaviour of MgO-CaZrO3-Based Refractories for Cement Kilns

Article Preview

Abstract:

The mechanical behaviour of ceramic refractories formulated in the MgO-CaO-SiO2- ZrO2 system is analysed in terms of the room temperature Young´s modulus, the modulus of rupture and the work of fracture at 25 and 1100°C. The materials have been designed taking into account the phase equilibrium relationships to obtain MgO-CaZrO3-Ca2SiO4-Ca3Mg(SiO4)2 or MgO-CaZrO3-Ca3Mg(SiO4)2-c-ZrO2 as final crystalline phases. Different relationships between the proportion and sizes of the fines and the aggregates have been explored. The microstructure of the materials has been characterised in terms of density, crystalline phases and phase distribution and morphology. A combination of X-Ray diffraction (XRD) analyses and Reflected Light Optical Microscopy (RLOM) has been used. The relationships between the obtained phases and microstructures and the grain size distributions of the used raw materials have been established. The relationships between the mineralogical composition and the obtained microstructure and the mechanical behaviour are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. E. Lee and R. E. Moore, 'Evolution of In-Situ Refractories in the 20th Century, ', J. Am. Ceram. Soc., 81 (6) 1385-410 (1998).

Google Scholar

[2] D.J. Bray, Toxicity of chromium compounds formed in refractories, Am. Ceram. Soc. Bull. 64 (7) 1012-1016 (1985).

Google Scholar

[3] Kajita K., Honda T., Kozuka, K., Tsuchiya, Y., Sakakibor, K., Tanemura F., Effect of MgO Aggregate on the thermal characteristics of MgO-spinel bricks", Taikabutsu Overseas 89-90 (1991).

Google Scholar

[4] De Aza, S, Richmond, C, White. Compatibility relationships of periclase in the system CaOMgO-ZrO2-SiO2, J. Trans. Br. Ceram. Soc. 1974; 73(4): 109-116.

Google Scholar

[5] Sircar A., Brett N.H., White. J., Phase Studies in the system CaO-MgO-ZrO2-SiO2. Part II: Compatibility relations of zirconia,. J. Trans. Br. Ceram. Soc., 77(3) 77-88 (1978).

Google Scholar

[6] Serena S, Sainz MA, Caballero A, Corrosion behavior of MgO/CaZrO3 refractory matrix by clinker, J. Eur. Ceram. Soc. , 24 (8) 2399-2406 (2004).

DOI: 10.1016/j.jeurceramsoc.2003.07.007

Google Scholar

[7] Rodríguez-Galicia, J. L., de Aza, A.H., Rendón-Ángeles, J.C., Pena, P. The Mechanism of corrosion of MgO-CaZrO3-calcium silicate materials by cement clinker, J. Eur. Ceram. Soc., 27 (1) 79-89 (2007).

DOI: 10.1016/j.jeurceramsoc.2006.01.014

Google Scholar

[8] Serena S, Sainz MA, Caballero A. The system Clinker-MgO-CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker, J. Eur. Ceram. Soc. 29 (11) 21992209 (2009).

DOI: 10.1016/j.jeurceramsoc.2009.01.015

Google Scholar

[9] Guo Z., Palco S., Rigaud M. Bonding of Cement Clinker onto Doloma-Based Refractories,. J. Am. Ceram. Soc., 88 (6) 1481-1487 (2005).

DOI: 10.1111/j.1551-2916.2005.00255.x

Google Scholar

[10] Rodríguez J.L., Rodríguez M.A., De Aza S., Pena P. Reaction Sintering of zircon-dolomite mixtures,. J. Eur. Ceram. Soc., 21 (3) 343-354 (2001).

DOI: 10.1016/s0955-2219(00)00212-0

Google Scholar

[11] Rodríguez JL, De Aza S, Pena P. Effect of agglomerate and grain size on the reaction sintering of zircon-dolomite mixtures,. Brit. Ceram. Trans., 100 (4) 181-191 (2001).

DOI: 10.1179/096797801681431

Google Scholar

[12] J.L. Rodríguez, C. Baudín, P. Pena Relationships between phase constitution and mechanical behaviour in MgO-CaZrO3-calcium silicate materials,. J. Eur. Ceram. Soc., 24 (4) 669-679 (2004).

DOI: 10.1016/s0955-2219(03)00268-1

Google Scholar

[13] J. L. Rodríguez-Galicia, B. Fernandez-Arguijo, J. C. Rendón-Angeles, F. J. Valle, P. Pena. Reaction Sintering of Mexican Dolomite-Zircon Mixtures, Bol. Soc. Esp. Ceram. y V., 44 (3) 185191 (2005).

DOI: 10.3989/cyv.2005.v44.i4.380

Google Scholar

[14] Mathews, M. D., Mirza, E. B. and Momin, A. C., High temperature X-ray diffractometric studies of CaZrO3, SrZrO3 and BaZrO3,. J. Mat. Sci. Letters, 10, 305-306 (1991).

DOI: 10.1007/bf00719691

Google Scholar

[15] W. E. Lee and W. M. Rainforth. Refractory materials, pp.470-488 in Ceramic Microstructures: Property Control by Processing , Chapman & Hall, London (UK) (1994).

Google Scholar

[16] Funk, J. E. and Dinger, D. R., Particle size control for high-solids castable Refractories, Am. Ceram. Soc. Bull., 73, 66-69 (1994).

Google Scholar

[17] Alvarez, E. Criado, C. Baudín, G. Duphia, and H. Kelichaus, Hot Modulus of Rupture Automatic Testing Machine"; Proceedings of the UNITECR , 93 Congress. Asociación Latinoamericana de Fabricantes de Refractarios, Sao Paulo, Brazil, 1993. pp.435-41.

Google Scholar

[18] W.D. Kingery, H.K. Bowen and D.R. Uhlmann., in Introduction to Ceramics,. Ed. A. WileyInterscience, Publication John Wiley&Sons, USA, (1979).

Google Scholar