Reentrance of Macroscopic Quantum Tunneling in Cuprate Superconductors

Article Preview

Abstract:

We present a theoretical analysis of the transition from thermal activation (TA) regime to the macroscopic quantum tunneling (MQT) regime of the decay from a metastable persistent current state in grain boundary junctions of cuprate superconductors. This transition is conventionally characterized by a single crossover temperature determined by the potential profile and dissipative mechanisms. It is shown that due to the existence of low energy bound states (mid-gap states) for various relative orientations of the crystal axes, there exists a window of parameters where one finds, with lowering temperature, an inverse crossover from MQT to TA, followed by a subsequent reentrance of MQT. It is shown that these predictions are in reasonable agreement with recent experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-160

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Leggett, and A. J. Garg: Phys. Rev. Lett. Vol. 54, p.857 (1985).

Google Scholar

[2] Y. Nakamura, C. D. Chen and J. S. Tsai: Phys. Rev. Lett. Vol. 79, p.2328 (1997).

Google Scholar

[3] V. Bouchiat, et al.: Phys. Scr. T76, p.165 (1998).

Google Scholar

[4] J. R. Friedman, et al.: Nature, Vol. 406, p.43 (2000).

Google Scholar

[5] Y. Makhlin, G. Schön, and A. Shnirman: Rev. Mod. Phys. Vol. 73, p.357 (2001).

Google Scholar

[6] G. Wendin and V. S. Shumeiko: Low Temp. Phys. Vol. 33, p.724 (2007).

Google Scholar

[7] J. Clarke, and F. K. Wilhelm: Nature Vol. 453, p.1031 (2008).

Google Scholar

[8] C. –R. Hu: Phys. Rev. Lett. Vol. 72, p.1526 (1994).

Google Scholar

[9] C. Bruder, A. van Otterlo, and G. T. Zimanyi: Phys. Rev. B. Vol. 51, p.12904 (1995).

Google Scholar

[10] S. Kawabata, et al: Phys. Rev. B, Vol. 72, p.052506 (2005).

Google Scholar

[11] T. Löfwander, et al: Supercond. Sci. Technol. Vol. 14, R53 (2001).

Google Scholar

[12] S. Kashiwaya and Y. Tanaka: Rep. Prog. Phys. Vol. 63, p.1641 (2000).

Google Scholar

[13] Th. Bauch, et al.: Phys. Rev. Lett. Vol. 94, p.087003 (2005).

Google Scholar

[14] H. Grabert and U. Weiss: Phys. Rev. Lett. Vol. 53, p.1787 (1984).

Google Scholar

[15] V. Ambegaokar, U. Eckern, and G. Schön: Phys. Rev. Lett. Vol. 48, p.1745 (1982).

Google Scholar

[16] J. Cuevas and M. Fogelström: Phys. Rev. B. Vol. 64, p.104502 (2001).

Google Scholar

[17] M. Matsumoto, and H. Shiba: J. Phys. Soc. Jap., Vol. 64, p.1703 (1995).

Google Scholar

[18] H. Hilgenkamp and J. Mannhart: Rev. Mod. Phys. Vol. 74, p.485 (2002).

Google Scholar

[19] D. J. Van Harlingen: Rev. Mod. Phys. Vol. 67, p.515 (1995).

Google Scholar

[20] C. C. Tsuei and J. R. Kirtley: Rev. Mod. Phys. Vol. 72, p.969 (2000).

Google Scholar

[21] Th. Bauch, et al.: Science, Vol. 311, p.57 (2006).

Google Scholar