Iron Pnictide Thin Film Hybrid Josephson Junctions

Article Preview

Abstract:

Thin films of iron pnictides open the way for fundamental experiments on superconductivity in this material. Thus we started to develop tunneling and Josephson junctions with pnictide film electrodes. Different preparation methods for Josephson junctions were investigated and the first results are presented. Resistive measurements show a high superconductive transition temperature of about 20 K even for the La-1111 electrode after patterning and preparation of the tunneling window. The hybrid junctions were completed with a PbIn counter electrode and normal conducting gold layers as barriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-140

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. M. Parish, J. Hu, A. B. Bernevig, Phys. Rev. B, 78 (2008) 144514.

Google Scholar

[2] D. Parker and I.I. Mazin, Phys. Rev. Lett., 102 (2009) 227007.

Google Scholar

[3] S. Onari, Y. Tanaka, Phys. Rev. B 79 (2009) 174526.

Google Scholar

[4] W. F. Tsai, D.X. Yao, B. A. Bernevig, J. P. Hu, Phys. Rev. B 80 (2009) 012511.

Google Scholar

[5] P. Ghaemi, F. Wang, A. Vishwanath, Phys. Rev. Lett. 102 (2009) 157002.

Google Scholar

[6] Y. Ota, M. Machida, T. Koyama, H. Matsumoto, Phys. Rev. Lett., 102(2009) 237003.

Google Scholar

[7] D. Inotani, Y. Ohashi, arXiv: 0901. 1718 (2009), unpublished.

Google Scholar

[8] C. T. Chen, C. C. Tsuei, M. B. Ketchen , Z. A. Ren, Z. X. Zhao, Nature Physics 6 (2010) 260.

Google Scholar

[9] J. Wu, P. Phillips, Phys. Rev. B 79 (2009) 092502.

Google Scholar

[10] X.H. Zhang, Y.S. Oh, Y. Liu, L. Yan, K.H. Kim, R.L. Greene, and I. Takeuchi: Phys. Rev. Lett. 102 (2009) 147002.

Google Scholar

[11] Zhou YR, Li YR, Zuo JW, Liu RY, Su SK, Chen GF, Lu JL, Wang NL, and Wang YP, arXiv: 0812. 3295 (2009), unpublished.

Google Scholar

[12] X.H. Zhang, S.R. Saha, N.P. Butch, K. Kirshenbaum, J.P. Paglione, R.L. Greene, Y. Liu, L.Q. Yan, Y.S. Oh, K.H. Kim, I. Takeuchi, Appl. Phys. Lett. 95 (2009) 062510.

DOI: 10.1063/1.3205123

Google Scholar

[13] T. Katase, Y. Ishimaru, A. Tsukamoto, H. Hiramatsu, T. Kamiya, K. Tanabe, H. Hosono, Appl. Phys. Lett. 96 (2010) 142507.

DOI: 10.1063/1.3371814

Google Scholar

[14] W.Q. Chen, F. Ma, Z.Y. Lu, F.C. Zhang, Phys. Rev. Lett. 103 (2009) 207001.

Google Scholar

[15] C.W. Hicks, T.M. Lippman, M.E. Huber, Z.A. Ren, Z.X. Zhao, K.A. Moler, J. Phys. Soc. Jpn. 78 (2009) 013708.

Google Scholar

[16] P. Müller, Y. Koval, G. Behr, B. Büchner, Verhandl. DPG, Dresden, TT36. 7 (2009).

Google Scholar

[17] E. Backen, S. Haindl, T. Niemeier, R. Huehne, T. Freudenberg, J. Werner, G. Behr, L. Schultz, B. Holzapfel, Supercond. Sci. Technol. 21 (2008) 122001.

DOI: 10.1088/0953-2048/21/12/122001

Google Scholar

[18] M. Kidszun, S. Haindl, E. Reich, J. Hänisch, K. Iida, L. Schultz, B. Holzapfel, Supercond. Sci. Technol. (2010) 23, 022002.

DOI: 10.1088/0953-2048/23/2/022002

Google Scholar

[19] S. Haindl, M. Kidszun, A. Kauffmann, K. Nenkov, N. Kozlova, J. Freudenberger, T. Thersleff, J. Hänisch, J. Werner, E. Reich, L. Schultz, B. Holzapfel., Phys. Rev. Lett. 104 (2010) 077001.

DOI: 10.1103/physrevlett.106.137001

Google Scholar

[20] W. J. Skocpol, M. R. Beasley, M. Tinkham, J. Appl. Phys. 45 (1974) 4054.

Google Scholar

[21] T. Shapoval, S. Engel, M. Gründlich, D. Meier, E. Backen, V. Neu, B. Holzapfel, L. Schultz, Supercond. Sci. Technol. 21 (2008) 105015.

DOI: 10.1088/0953-2048/21/10/105015

Google Scholar