Interface and Surface Modification of ZnO Induced by Hydrogen and Nitrogen and their Impact on Optical Properties

Article Preview

Abstract:

In this contribution, we address two critical and interesting aspects from both fundamental and technological point of views, which are the polarity of ZnO and the interface reactivity and stability to hydrogen and nitrogen. The effects of atomic hydrogen and nitrogen produced by radiofrequency (r.f. ,13.56 MHz) H2 and N2 plasmas and of temperature on the optical, compositional and structural properties of Zn- and O-polar ZnO have been studied. It is found that Zn-polar ZnO is highly reactive with atomic hydrogen while O-polar ZnO is almost inert. Conversely, both polarities react with nitrogen, with the O-polar ZnO showing a larger reactivity toward N-atoms than the Zn-polarity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-135

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.F. Yu, Y. Clement, S.P. Lau and H.W. Lee: Appl. Phys. Lett. Vol. 84 (2004), p.3244.

Google Scholar

[2] Y.M. Strzhemechny, J. Nemergut, P.E. Smith, J. Bae, D.C. Look and L.J. Brillson: J. Appl. Phys. Vol. 94 (2003), p.4256.

Google Scholar

[3] B. Meyer and D. Marx: J. Phys. Condens. Matter Vol. 15 (2003), p. L89.

Google Scholar

[4] A. Tsukazaki, M. Kubota, A. Othomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki: Jpn. J. Appl. Phys. Vol. 44 (2005), p. L643.

DOI: 10.1143/jjap.44.l643

Google Scholar

[5] J.L. Lyons, A Janotti, C.G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).

Google Scholar

[6] J. Soohwan, J.J. Chen, F. Ren, H.S. Yang, S. Y. Han, D. P. Norton, S. J. Pearton, J. Vac. Sci. Technol. B 24, 690 (2006).

Google Scholar

[7] G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragala`, M. Losurdo, Adv. Mater. 21, 1700-1706 (2009).

DOI: 10.1002/adma.200802579

Google Scholar

[8] Y. Segawa, A. Ohtomo, M. Kawasaki, Z.K. Tang, P. Yu and G.K.L. Wong: Phys. Stat. Sol. B Vol. 202 (1997), p.669.

Google Scholar

[9] V. Kirilyuk, A.R.A. Zauner, P.C.M. Christianen, J.L. Weyher, P.R. Hageman and P.K. Larsen: Appl. Phys. Lett. Vol. 76 (2000), p.2355.

DOI: 10.1063/1.126344

Google Scholar

[10] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J.R. Shealy, L.F. Eastman, O. Ambacher, M. Stutzman: J. Appl. Phys. Vol. 87 (2000), p.3375.

Google Scholar

[11] C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, D.K. Gaskill: J. Appl. Phys. Vol. 76 (1994), p.236.

Google Scholar

[12] L.K. Li, M.J. Jurkovic, W.I. Wang, J.M. Van Hove P.P. Chow: Appl. Phys. Lett. Vol. 76 (2000), p.1740.

Google Scholar

[13] M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, et al., J Nanopart Res 11, 1521-1554 (2009).

Google Scholar

[14] T. Wolkenstein, Electronic Processes on Semiconductor Surfaces during Chemisorption, Consultant Bureau-Plenum Publishing Corporation, New York, (1991).

Google Scholar

[15] M. Kunat, S.G. Girol, T. Becker, U. Burghaus and C. Woll: Phys. Rev. B Vol. 66 (2002), p.081402.

Google Scholar

[16] G. Kresse, O. Dulub and U. Diebold: Phys. Rev. B Vol. 68 (2003), p.245409.

Google Scholar