Modeling the Elastic Anisotropy of Woven Hierarchical Tissues: Experimental Comparison on Biological Materials and Design of a New Class of Scaffolds

Article Preview

Abstract:

This paper models the elastic properties of 2-D woven hierarchical tissues, assuming an orthotropic material of warp and fill yarns at level 0. Considering matrix transformation and stiffness averaging, stiffness matrices of warp and fill yarns of the tissue at level i are employed to calculate those of the tissue at level i+1. We compare our theory with another approach from the literature on tendons and experiments on leaves performed by ourselves. The result shows the possibility of designing a new class of hierarchical 2-D scaffolds with desired elastic anisotropy, better matching the anisotropy of the biological tissues and thus maximizing the regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-158

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Pugno: Nanotechnol., Vol. 17 (2006), p.5480.

Google Scholar

[2] N. Pugno and A. Carpinteri: Phil. Mag. Lett., Vol. 88 (2008), p.397.

Google Scholar

[3] N. Pugno: Mater. Today, Vol. 13 (2010), p.40.

Google Scholar

[4] M.A.J. Cox, N.J.B. Driessen, R.A. Boerboom, C.V.C. Bouten and F.P.T. Baaijens. J. Biomech., Vol. 41 (2008), p.422.

Google Scholar

[5] S.C. Cowin and S.B. Doty: Tissue mechanics (Springer, New York 2007).

Google Scholar

[6] E. Baer, A. Hiltner and R. Morgan: Phys. Today, Vol. 45 (1992), p.60.

Google Scholar

[7] F.T. Moutos, L.E. Freed and F. Guilaka: Nat Mater., Vol. 6 (2007), p.162.

Google Scholar

[8] E. Traversa, B. Mecheri, C. Mandoli, S. Soliman, A. Rinaldi, S. Licoccia, G. Forte, F. Pagliari, S. Pagliari, F. Carotenuto, M. Minieri and P. Di Nardo:J. Exp. Nanosci., Vol. 3 (2008), p.97.

DOI: 10.1080/17458080701713946

Google Scholar

[9] S.H. Ahn, Y.H. Koh and G.H. Kim: J. Micromech. Microeng., Vol. 20 (2010), 065015.

Google Scholar

[10] R. Lakes: Nat., Vol. 361 (1993), p.511.

Google Scholar

[11] R.F. Gibson: Principles of Composite Material Mechanics, first ed (McGraw-Hill, New York 1994).

Google Scholar

[12] A. Bogdanovich and C. Pastore: Mechanics of Textile and Laminated Composites, first ed. (Chapman & Hall, London 1996).

Google Scholar

[13] V.C. Mow, A. Radcliffe and SL-Y Woo: Biomechanics of Diarthroidal Joints, first ed. (Springer, New York 1990).

Google Scholar

[14] R.M.V. Pidaparti, A. Chandran, Y. Takano and C.H. Turner: J. Biomech., Vol. 29 (1996), p.909.

Google Scholar

[15] M. Paulsson, P.D. Yurchenco, G.C. Ruben, J. Engel and R. Timpl: J. Mol. Biol., Vol. 197 (1987), p.297.

Google Scholar

[16] R.R. Lemos, M. Epstein and W. Herzog: Med. Biol. Eng. Comput., Vol. 46 (2008), p.23.

Google Scholar

[17] K.M. Quapp and J.A. Weiss: Biomech. Eng., Vol. 120 (1998), p.757.

Google Scholar

[18] H.A. Lynch, W. Johannessen, J.P. Wu, A. Jawa and D.M. Elliott: J. Biomech. Eng., Vol. 125 (2003), p.726.

Google Scholar

[19] M. Lavagnino, S.P. Arnoczky, E. Kepich, O. Caballero and R.C. Haut: Biomech. Model. Mechan., Vol. 7 (2008), p.405.

Google Scholar

[20] R. Fechete, D.E. Demco, B. Blumich, U. Eliav and G. Navon: J. Magn. Reson., Vol. 162 (2003), p.166.

Google Scholar